UZH-Logo

Maintenance Infos

Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts


Laenen, B; Shaw, B; Schneider, H; et al; Désamoré, A; Vanderpoorten, A; Shaw, A J (2014). Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Communications, 5(5134):Online.

Abstract

Unraveling the macroevolutionary history of bryophytes, which arose soon after the origin of land plants but exhibit substantially lower species richness than the more recently derived angiosperms, has been challenged by the scarce fossil record. Here we demonstrate that overall estimates of net species diversification are approximately half those reported in ferns and ∼30% those described for angiosperms. Nevertheless, statistical rate analyses on time-calibrated large-scale phylogenies reveal that mosses and liverworts underwent bursts of diversification since the mid-Mesozoic. The diversification rates further increase in specific lineages towards the Cenozoic to reach, in the most recently derived lineages, values that are comparable to those reported in angiosperms. This suggests that low diversification rates do not fully account for current patterns of bryophyte species richness, and we hypothesize that, as in gymnosperms, the low extant bryophyte species richness also results from massive extinctions.

Unraveling the macroevolutionary history of bryophytes, which arose soon after the origin of land plants but exhibit substantially lower species richness than the more recently derived angiosperms, has been challenged by the scarce fossil record. Here we demonstrate that overall estimates of net species diversification are approximately half those reported in ferns and ∼30% those described for angiosperms. Nevertheless, statistical rate analyses on time-calibrated large-scale phylogenies reveal that mosses and liverworts underwent bursts of diversification since the mid-Mesozoic. The diversification rates further increase in specific lineages towards the Cenozoic to reach, in the most recently derived lineages, values that are comparable to those reported in angiosperms. This suggests that low diversification rates do not fully account for current patterns of bryophyte species richness, and we hypothesize that, as in gymnosperms, the low extant bryophyte species richness also results from massive extinctions.

Citations

32 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 30 Oct 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Systematic Botany and Botanical Gardens
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2014
Deposited On:30 Oct 2014 16:49
Last Modified:05 Apr 2016 18:27
Publisher:Nature Publishing Group
ISSN:2041-1723
Publisher DOI:https://doi.org/10.1038/ncomms6134
PubMed ID:25346115
Permanent URL: https://doi.org/10.5167/uzh-100024

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 411kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations