UZH-Logo

Maintenance Infos

Evaluation of Microshear Bond Strength of Orthodontic Resin Cement to Monolithic Zirconium Oxide as a Function of Surface Conditioning Method


Canigur Bavbek, Nehir; Roulet, Jean-François; Özcan, Mutlu (2014). Evaluation of Microshear Bond Strength of Orthodontic Resin Cement to Monolithic Zirconium Oxide as a Function of Surface Conditioning Method. Journal of Adhesive Dentistry, 16(5):473-480.

Abstract

Purpose: To evaluate the microshear bond strength (μSBS) of orthodontic resin cement to monolithic zirconium oxide ceramic (MZ) after different surface conditioning methods. Materials and Methods: Two types of MZ (BruxZir Solid Zirconia, n = 60; Prettau-Zirkon, n = 60) with two types of surface finish (glazed, n = 30 per group; polished, n = 30 per group) were tested after two surface conditioning methods: 1. air abrasion with 30-μm silica coated aluminum oxide (Al2O3) particles (CoJet), or 2. air abrasion with 50-μm Al2O3 particles. The non-conditioned group acted as the control. A universal primer (Monobond-Plus) and an orthodontic primer (Transbond-XT Primer) were applied to all specimen surfaces. Orthodontic resin composite (Transbond-XT) was bonded using a mold and photopolymerized. The bonded specimens were subjected to μSBS testing (0.5 mm/min). Data were analyzed statistically using three-way ANOVA and the Sidac adjustment post-hoc test (α = 0.05). Failure modes were analyzed using a stereomicroscope (30X). Results: Mean μSBS values (MPa) did not show a significant difference between the two brands of MZ (p > 0.05). In both glazed (44 ± 6.4) and polished (45.9 ± 4.8) groups, CoJet application showed the highest μSBS values (p < 0.001). The control group (34.4 ± 6) presented significantly better results compared to that of Al2O3 (30 ± 3.8) (p < 0.05) on glazed surfaces, but it was the opposite in the polished groups (control: 20.3 ± 4.7; Al2O3: 33.8 ± 4.7; p < 0.001). Adhesive failure was the dominant type in all groups. Conditioning MZs with Al2O3 and CoJet increased the percentage of mixed failure type. Conclusion: Air abrasion with CoJet followed by the application of universal primer improved the μSBS of orthodontic resin to both the polished and glazed monolithic zirconium oxide materials tested.

Abstract

Purpose: To evaluate the microshear bond strength (μSBS) of orthodontic resin cement to monolithic zirconium oxide ceramic (MZ) after different surface conditioning methods. Materials and Methods: Two types of MZ (BruxZir Solid Zirconia, n = 60; Prettau-Zirkon, n = 60) with two types of surface finish (glazed, n = 30 per group; polished, n = 30 per group) were tested after two surface conditioning methods: 1. air abrasion with 30-μm silica coated aluminum oxide (Al2O3) particles (CoJet), or 2. air abrasion with 50-μm Al2O3 particles. The non-conditioned group acted as the control. A universal primer (Monobond-Plus) and an orthodontic primer (Transbond-XT Primer) were applied to all specimen surfaces. Orthodontic resin composite (Transbond-XT) was bonded using a mold and photopolymerized. The bonded specimens were subjected to μSBS testing (0.5 mm/min). Data were analyzed statistically using three-way ANOVA and the Sidac adjustment post-hoc test (α = 0.05). Failure modes were analyzed using a stereomicroscope (30X). Results: Mean μSBS values (MPa) did not show a significant difference between the two brands of MZ (p > 0.05). In both glazed (44 ± 6.4) and polished (45.9 ± 4.8) groups, CoJet application showed the highest μSBS values (p < 0.001). The control group (34.4 ± 6) presented significantly better results compared to that of Al2O3 (30 ± 3.8) (p < 0.05) on glazed surfaces, but it was the opposite in the polished groups (control: 20.3 ± 4.7; Al2O3: 33.8 ± 4.7; p < 0.001). Adhesive failure was the dominant type in all groups. Conditioning MZs with Al2O3 and CoJet increased the percentage of mixed failure type. Conclusion: Air abrasion with CoJet followed by the application of universal primer improved the μSBS of orthodontic resin to both the polished and glazed monolithic zirconium oxide materials tested.

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 13 Nov 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Fixed and Removable Prosthodontics
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:25 September 2014
Deposited On:13 Nov 2014 12:42
Last Modified:01 Dec 2016 09:48
Publisher:Quintessence Publishing
ISSN:1461-5185
Publisher DOI:https://doi.org/10.3290/j.jad.a32812
PubMed ID:25264551

Download

[img]
Content: Accepted Version
Filetype: PDF - Registered users only
Size: 3MB
View at publisher
[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 125kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations