UZH-Logo

Maintenance Infos

Conflict monitoring and error processing: New insights from simultaneous EEG-fMRI


Iannaccone, Reto; Hauser, Tobias U; Staempfli, Philipp; Walitza, Susanne; Brandeis, Daniel; Brem, Silvia (2015). Conflict monitoring and error processing: New insights from simultaneous EEG-fMRI. NeuroImage, 105:395-407.

Abstract

Error processing and conflict monitoring are essential executive functions for goal directed actions and adaptation to conflicting information. Although medial frontal regions such as the anterior cingulate cortex (ACC) and the pre-supplementary motor area (pre-SMA) are known to be involved in these functions, there is still considerable heterogeneity regarding their spatio-temporal activations. The timing of these functions has been associated with two separable event-related potentials (ERPs) usually localized to the medial frontal wall, one during error processing (ERN - error related negativity) and one during conflict monitoring (N2). In this study we aimed to spatially and temporally dissociate conflict and error processing using simultaneously recorded EEG and fMRI data from a modified Flanker task in healthy adults. We demonstrate a spatial dissociation of conflict monitoring and error processing along the medial frontal wall, with selective conflict level dependent activation of the SMA/pre-SMA. Activation to error processing was located in the ACC, rostral cingulate zone (RCZ) and pre-SMA. The EEG-informed fMRI analysis revealed that stronger ERN amplitudes are associated with increased activation in a large coherent cluster comprising the ACC, RCZ and pre-SMA, while N2 amplitudes increased with activation in the pre-SMA. Conjunction analysis of EEG-informed fMRI revealed common activation of ERN and N2 in the pre-SMA and divergent activation in the RCZ. No conjoint activation between error processing and conflict monitoring was found with standard fMRI analysis along the medial frontal wall. Our fMRI findings clearly demonstrate that conflict monitoring and error processing are spatially dissociable along the medial frontal wall. Moreover, the overlap of ERN- and N2-informed fMRI activation in the pre-SMA provides new evidence that these ERP components share conflict related processing functions and are thus not completely separable.

Error processing and conflict monitoring are essential executive functions for goal directed actions and adaptation to conflicting information. Although medial frontal regions such as the anterior cingulate cortex (ACC) and the pre-supplementary motor area (pre-SMA) are known to be involved in these functions, there is still considerable heterogeneity regarding their spatio-temporal activations. The timing of these functions has been associated with two separable event-related potentials (ERPs) usually localized to the medial frontal wall, one during error processing (ERN - error related negativity) and one during conflict monitoring (N2). In this study we aimed to spatially and temporally dissociate conflict and error processing using simultaneously recorded EEG and fMRI data from a modified Flanker task in healthy adults. We demonstrate a spatial dissociation of conflict monitoring and error processing along the medial frontal wall, with selective conflict level dependent activation of the SMA/pre-SMA. Activation to error processing was located in the ACC, rostral cingulate zone (RCZ) and pre-SMA. The EEG-informed fMRI analysis revealed that stronger ERN amplitudes are associated with increased activation in a large coherent cluster comprising the ACC, RCZ and pre-SMA, while N2 amplitudes increased with activation in the pre-SMA. Conjunction analysis of EEG-informed fMRI revealed common activation of ERN and N2 in the pre-SMA and divergent activation in the RCZ. No conjoint activation between error processing and conflict monitoring was found with standard fMRI analysis along the medial frontal wall. Our fMRI findings clearly demonstrate that conflict monitoring and error processing are spatially dissociable along the medial frontal wall. Moreover, the overlap of ERN- and N2-informed fMRI activation in the pre-SMA provides new evidence that these ERP components share conflict related processing functions and are thus not completely separable.

Citations

13 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 05 Dec 2014
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
04 Faculty of Medicine > Center for Child and Adolescent Psychiatry
04 Faculty of Medicine > Neuroscience Center Zurich
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2015
Deposited On:05 Dec 2014 14:30
Last Modified:05 Apr 2016 18:35
Publisher:Elsevier
ISSN:1053-8119
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2014.10.028
PubMed ID:25462691
Permanent URL: https://doi.org/10.5167/uzh-101862

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations