UZH-Logo

Maintenance Infos

Hasty retreat of glaciers in northern Patagonia from 1985 to 2011


Paul, Frank; Mölg, Nico (2014). Hasty retreat of glaciers in northern Patagonia from 1985 to 2011. Journal of Glaciology, 60(224):1033-1043.

Abstract

Mapping changes in glacier extent from repeat optical satellite data has revealed widespread glacier decline in nearly all regions of the world over the past few decades. While numerous studies have documented the changes of the outlet glaciers of the Northern and Southern Patagonia Icefields (NPI/SPI), information about glacier changes in the Patagonian Andes (to the north of the NPI) is much scarcer. Here we present an assessment of area changes for glaciers mainly located in the Palena district of Chile based on glacier inventories for 1985, 2000 and 2011 that were derived from two consecutive Landsat scenes and a digital elevation model. The analysis revealed a dramatic area decline for the largest glaciers and total area loss of 25% from 1985 to 2011. The lower parts of several larger glaciers (>10 km2) melted completely. Area loss below 1000 m elevation was 50–100% in both periods, and 374 glaciers out of 1664 disappeared. The number of proglacial lakes increased from 223 to 327 and their area expanded by 11.6 km2 (59%) between 1985 and 2011. Seasonal snow persisting at high elevations in the 2011 scene was a major obstacle to glacier delineation, so the obtained area change rate of $1% a–1 over the entire period is a lower-bound estimate. The observed climate trends (e.g. cooling in Puerto Montt) are in contrast to the observed shrinkage.

Mapping changes in glacier extent from repeat optical satellite data has revealed widespread glacier decline in nearly all regions of the world over the past few decades. While numerous studies have documented the changes of the outlet glaciers of the Northern and Southern Patagonia Icefields (NPI/SPI), information about glacier changes in the Patagonian Andes (to the north of the NPI) is much scarcer. Here we present an assessment of area changes for glaciers mainly located in the Palena district of Chile based on glacier inventories for 1985, 2000 and 2011 that were derived from two consecutive Landsat scenes and a digital elevation model. The analysis revealed a dramatic area decline for the largest glaciers and total area loss of 25% from 1985 to 2011. The lower parts of several larger glaciers (>10 km2) melted completely. Area loss below 1000 m elevation was 50–100% in both periods, and 374 glaciers out of 1664 disappeared. The number of proglacial lakes increased from 223 to 327 and their area expanded by 11.6 km2 (59%) between 1985 and 2011. Seasonal snow persisting at high elevations in the 2011 scene was a major obstacle to glacier delineation, so the obtained area change rate of $1% a–1 over the entire period is a lower-bound estimate. The observed climate trends (e.g. cooling in Puerto Montt) are in contrast to the observed shrinkage.

Citations

9 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

32 downloads since deposited on 05 Dec 2014
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2014
Deposited On:05 Dec 2014 15:44
Last Modified:05 Apr 2016 18:35
Publisher:International Glaciological Society
ISSN:0022-1430
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3189/2014JoG14J104
Permanent URL: https://doi.org/10.5167/uzh-101919

Download

[img]
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations