UZH-Logo

Maintenance Infos

Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX)


Abstract

We present the Airborne Prism Experiment (APEX), its calibration and subsequent radiometric measurements as well as Earth science applications derived from this data. APEX is a dispersive pushbroom imaging spectrometer covering the solar reflected wavelength range between 372 and 2540 nm with nominal 312 (max. 532) spectral bands. APEX is calibrated using a combination of laboratory, in-flight and vicarious calibration approaches. These are complemented by using a forward and inverse radiative transfer modeling approach, suitable to further validate APEX data. We establish traceability of APEX radiances to a primary calibration standard, including uncertainty analysis. We also discuss the instrument simulation process ranging from initial specifications to performance validation. In a second part, we present Earth science applications using APEX. They include geometric and atmospheric compensated as well as reflectance anisotropy minimized Level 2 data. Further, we discuss retrieval of aerosol optical depth as well as vertical column density of NOx, a radiance data-based coupled canopy–atmosphere model, and finally measuring sun-induced chlorophyll fluorescence (Fs) and infer plant pigment content. The results report on all APEX specifications including validation. APEX radiances are traceable to a primary standard with b 4% uncertainty and with an average SNR of N 625 for all spectral bands. Radiance based vicarious calibration is traceable to a secondary standard with à6.5% uncertainty. Except for inferring plant pigment content, all applications are validated using in-situ measurement approaches and modeling. Even relatively broad APEX bands (FWHM of 6 nm at 760 nm) can assess Fs with modeling agreements as high as R2 = 0.87 (relative RMSE = 27.76%). We conclude on the use of high resolution imaging spectrometers and suggest further development of imaging spectrometers supporting science grade spectroscopy measurements.

Abstract

We present the Airborne Prism Experiment (APEX), its calibration and subsequent radiometric measurements as well as Earth science applications derived from this data. APEX is a dispersive pushbroom imaging spectrometer covering the solar reflected wavelength range between 372 and 2540 nm with nominal 312 (max. 532) spectral bands. APEX is calibrated using a combination of laboratory, in-flight and vicarious calibration approaches. These are complemented by using a forward and inverse radiative transfer modeling approach, suitable to further validate APEX data. We establish traceability of APEX radiances to a primary calibration standard, including uncertainty analysis. We also discuss the instrument simulation process ranging from initial specifications to performance validation. In a second part, we present Earth science applications using APEX. They include geometric and atmospheric compensated as well as reflectance anisotropy minimized Level 2 data. Further, we discuss retrieval of aerosol optical depth as well as vertical column density of NOx, a radiance data-based coupled canopy–atmosphere model, and finally measuring sun-induced chlorophyll fluorescence (Fs) and infer plant pigment content. The results report on all APEX specifications including validation. APEX radiances are traceable to a primary standard with b 4% uncertainty and with an average SNR of N 625 for all spectral bands. Radiance based vicarious calibration is traceable to a secondary standard with à6.5% uncertainty. Except for inferring plant pigment content, all applications are validated using in-situ measurement approaches and modeling. Even relatively broad APEX bands (FWHM of 6 nm at 760 nm) can assess Fs with modeling agreements as high as R2 = 0.87 (relative RMSE = 27.76%). We conclude on the use of high resolution imaging spectrometers and suggest further development of imaging spectrometers supporting science grade spectroscopy measurements.

Citations

19 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 10 Dec 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2015
Deposited On:10 Dec 2014 16:02
Last Modified:05 Apr 2016 18:36
Publisher:Elsevier
ISSN:0034-4257
Publisher DOI:https://doi.org/10.1016/j.rse.2014.11.014
Related URLs:http://www.sciencedirect.com/science/article/pii/S0034425714004568

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations