UZH-Logo

Structural flexibility of a helical peptide regulates vibrational energy transport properties


Backus, E H G; Nguyen, P H; Botan, V; Moretto, A; Crisma, M; Toniolo, C; Zerbe, O; Stock, G; Hamm, P (2008). Structural flexibility of a helical peptide regulates vibrational energy transport properties. Journal of Physical Chemistry. B, 112(48):15487-15492.

Abstract

Applying ultrafast vibrational spectroscopy, we find that vibrational energy transport along a helical peptide changes from inefficient but mostly ballistic below approximate to 270 K into diffusive and significantly more efficient above. On the basis of molecular dynamics simulations, we attribute this change to the increasing flexibility of the helix above this temperature, similar to the glass transition in proteins. Structural flexibility enhances intramolecular vibrational energy redistribution, thereby refeeding energy into the few vibrational modes that delocalize over large parts of the structure and therefore transport energy efficiently. The paper outlines concepts how one might regulate vibrational energy transport properties in ultrafast photobiological processes, as well as in molecular electronic devices, by engineering the flexibility of their components.

Applying ultrafast vibrational spectroscopy, we find that vibrational energy transport along a helical peptide changes from inefficient but mostly ballistic below approximate to 270 K into diffusive and significantly more efficient above. On the basis of molecular dynamics simulations, we attribute this change to the increasing flexibility of the helix above this temperature, similar to the glass transition in proteins. Structural flexibility enhances intramolecular vibrational energy redistribution, thereby refeeding energy into the few vibrational modes that delocalize over large parts of the structure and therefore transport energy efficiently. The paper outlines concepts how one might regulate vibrational energy transport properties in ultrafast photobiological processes, as well as in molecular electronic devices, by engineering the flexibility of their components.

Citations

29 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 14 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:4 December 2008
Deposited On:14 Jan 2009 12:33
Last Modified:05 Apr 2016 12:49
Publisher:American Chemical Society
ISSN:1520-5207
Publisher DOI:10.1021/jp806403p
PubMed ID:18991434
Permanent URL: http://doi.org/10.5167/uzh-10236

Download

[img]Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations