Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-10236

Backus, E H G; Nguyen, P H; Botan, V; Moretto, A; Crisma, M; Toniolo, C; Zerbe, O; Stock, G; Hamm, P (2008). Structural flexibility of a helical peptide regulates vibrational energy transport properties. Journal of Physical Chemistry. B, 112(48):15487-15492.

[img] PDF - Registered users only


Applying ultrafast vibrational spectroscopy, we find that vibrational energy transport along a helical peptide changes from inefficient but mostly ballistic below approximate to 270 K into diffusive and significantly more efficient above. On the basis of molecular dynamics simulations, we attribute this change to the increasing flexibility of the helix above this temperature, similar to the glass transition in proteins. Structural flexibility enhances intramolecular vibrational energy redistribution, thereby refeeding energy into the few vibrational modes that delocalize over large parts of the structure and therefore transport energy efficiently. The paper outlines concepts how one might regulate vibrational energy transport properties in ultrafast photobiological processes, as well as in molecular electronic devices, by engineering the flexibility of their components.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
DDC:540 Chemistry
Date:4 December 2008
Deposited On:14 Jan 2009 12:33
Last Modified:05 Jun 2014 13:50
Publisher:American Chemical Society
Publisher DOI:10.1021/jp806403p
PubMed ID:18991434
Citations:Web of Science®. Times Cited: 24
Google Scholar™
Scopus®. Citation Count: 25

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page