UZH-Logo

A simple molecular complex mediates widespread BMP-induced repression during Drosophila development.


Pyrowolakis, G; Hartmann, B; Müller, B; Basler, K; Affolter, M (2004). A simple molecular complex mediates widespread BMP-induced repression during Drosophila development. Developmental Cell, 7(2):229-240.

Abstract

The spatial and temporal control of gene expression during the development of multicellular organisms is regulated to a large degree by cell-cell signaling. We have uncovered a simple mechanism through which Dpp, a TGFbeta/BMP superfamily member in Drosophila, represses many key developmental genes in different tissues. A short DNA sequence, a Dpp-dependent silencer element, is sufficient to confer repression of gene transcription upon Dpp receptor activation and nuclear translocation of Mad and Medea. Transcriptional repression does not require the cooperative action of cell type-specific transcription factors but relies solely on the capacity of the silencer element to interact with Mad and Medea and to subsequently recruit the zinc finger-containing repressor protein Schnurri. Our findings demonstrate how the Dpp pathway can repress key targets in a simple and tissue-unrestricted manner in vivo and hence provide a paradigm for the inherent capacity of a signaling system to repress transcription upon pathway activation.

The spatial and temporal control of gene expression during the development of multicellular organisms is regulated to a large degree by cell-cell signaling. We have uncovered a simple mechanism through which Dpp, a TGFbeta/BMP superfamily member in Drosophila, represses many key developmental genes in different tissues. A short DNA sequence, a Dpp-dependent silencer element, is sufficient to confer repression of gene transcription upon Dpp receptor activation and nuclear translocation of Mad and Medea. Transcriptional repression does not require the cooperative action of cell type-specific transcription factors but relies solely on the capacity of the silencer element to interact with Mad and Medea and to subsequently recruit the zinc finger-containing repressor protein Schnurri. Our findings demonstrate how the Dpp pathway can repress key targets in a simple and tissue-unrestricted manner in vivo and hence provide a paradigm for the inherent capacity of a signaling system to repress transcription upon pathway activation.

Citations

88 citations in Web of Science®
88 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

180 downloads since deposited on 11 Feb 2008
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:August 2004
Deposited On:11 Feb 2008 12:20
Last Modified:05 Apr 2016 12:17
Publisher:Elsevier
ISSN:1534-5807
Publisher DOI:10.1016/j.devcel.2004.07.008
PubMed ID:15296719
Permanent URL: http://doi.org/10.5167/uzh-1033

Download

[img]
Preview
Filetype: PDF
Size: 647kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations