UZH-Logo

Maintenance Infos

Scientific foundations of allergen-specific immunotherapy for allergic disease


Soyka, Michael B; van de Veen, Willem; Holzmann, David; Akdis, Mübeccel; Akdis, Cezmi A (2014). Scientific foundations of allergen-specific immunotherapy for allergic disease. Chest, 146(5):1347-1357.

Abstract

Allergen-specific immunotherapy (AIT) was described as a therapeutic option for the treatment of allergies > 100 years ago. It is based on administration of allergen extracts and leads to the development of clinical allergen tolerance in selected patients. According to current knowledge, AIT results in the restoration of immune tolerance toward the allergen of interest. It is mainly accompanied by the induction of regulatory and suppressive subsets of T and B cells, the production of IgG4 isotype allergen-specific blocking antibodies, and decreased inflammatory responses to allergens by effector cells in inflamed tissues. Currently, AIT is mainly applied subcutaneously or sublingually and is suitable for both children and adults for pollen, pet dander, house dust mite, and venom allergies. It not only affects rhinoconjunctival symptoms but also has documented short- and long-term benefits in asthma treatment. Clinically, a fast onset of tolerance is achieved during desensitization, with a tolerable amount of side effects. The disease modification effect leads to decreased disease severity, less drug usage, prevention of future allergen sensitizations, and a long-term curative effect. Increasing safety while maintaining or even augmenting efficiency is the main goal of research for novel vaccine development and improvement of treatment schemes in AIT. This article reviews the principles of allergen-specific immune tolerance development and the effects of AIT in the clinical context.

Allergen-specific immunotherapy (AIT) was described as a therapeutic option for the treatment of allergies > 100 years ago. It is based on administration of allergen extracts and leads to the development of clinical allergen tolerance in selected patients. According to current knowledge, AIT results in the restoration of immune tolerance toward the allergen of interest. It is mainly accompanied by the induction of regulatory and suppressive subsets of T and B cells, the production of IgG4 isotype allergen-specific blocking antibodies, and decreased inflammatory responses to allergens by effector cells in inflamed tissues. Currently, AIT is mainly applied subcutaneously or sublingually and is suitable for both children and adults for pollen, pet dander, house dust mite, and venom allergies. It not only affects rhinoconjunctival symptoms but also has documented short- and long-term benefits in asthma treatment. Clinically, a fast onset of tolerance is achieved during desensitization, with a tolerable amount of side effects. The disease modification effect leads to decreased disease severity, less drug usage, prevention of future allergen sensitizations, and a long-term curative effect. Increasing safety while maintaining or even augmenting efficiency is the main goal of research for novel vaccine development and improvement of treatment schemes in AIT. This article reviews the principles of allergen-specific immune tolerance development and the effects of AIT in the clinical context.

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Otorhinolaryngology
04 Faculty of Medicine > Swiss Institute of Allergy and Asthma Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:November 2014
Deposited On:13 Jan 2015 16:07
Last Modified:05 Apr 2016 18:43
Publisher:American College of Chest Physicians
ISSN:0012-3692
Publisher DOI:https://doi.org/10.1378/chest.14-0049
PubMed ID:25367471

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations