Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Hengartner, M O (1999). Programmed cell death in the nematode C. elegans. Recent Progress in Hormone Research, 54:213-222.

Full text not available from this repository.

Abstract

Programmed cell death is a common feature during animal development. In the nematode C. elegans, more than 12 genes have been identified that function in the apoptotic killing and elimination of 131 of the 1090 cells that are generated during hermaphrodite development. These genes divide the process of programmed cell death into three distinct steps: execution of the death sentence; engulfment of dying cells; and degradation of dead, engulfed cells. Biochemical characterization of the genes in this pathway has led to the identification of an apoptotic machinery that mediates apoptotic death in this species. The proximal cause of apoptosis in C. elegans is the activation of the caspase homolog CED-3 from the inactive zymogen (proCED-3) into the mature protease. This activation is mediated by the Apaf-1 homolog CED-4. In cells that should survive, CED-3 and CED-4 pro-apoptotic activity is antagonized by the Bcl-2 family member CED-9. CED-9 has been proposed to prevent death by sequestering CED-4 and proCED-3 in an inactive ternary complex, the apoptosome. In cells fated to die, CED-9 is, in turn, inactivated by the pro-apoptotic BH3 domain-containing protein EGL-1, likely through a direct protein-protein interaction. The structural and functional conservation of cell death genes between nematodes and mammals strongly suggests that the apoptotic program is ancient in origin and that all metazoans share a common mechanism of apoptotic cell killing.

Citations

Downloads

0 downloads since deposited on 11 Feb 2008
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
DDC:570 Life sciences; biology
Language:English
Date:1999
Deposited On:11 Feb 2008 12:20
Last Modified:28 Nov 2013 01:20
Publisher:Academic Press New York
ISSN:0079-9963
PubMed ID:10548877

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page