UZH-Logo

Maintenance Infos

Programmed cell death in the nematode C. elegans.


Hengartner, M O (1999). Programmed cell death in the nematode C. elegans. Recent Progress in Hormone Research, 54:213-222.

Abstract

Programmed cell death is a common feature during animal development. In the nematode C. elegans, more than 12 genes have been identified that function in the apoptotic killing and elimination of 131 of the 1090 cells that are generated during hermaphrodite development. These genes divide the process of programmed cell death into three distinct steps: execution of the death sentence; engulfment of dying cells; and degradation of dead, engulfed cells. Biochemical characterization of the genes in this pathway has led to the identification of an apoptotic machinery that mediates apoptotic death in this species. The proximal cause of apoptosis in C. elegans is the activation of the caspase homolog CED-3 from the inactive zymogen (proCED-3) into the mature protease. This activation is mediated by the Apaf-1 homolog CED-4. In cells that should survive, CED-3 and CED-4 pro-apoptotic activity is antagonized by the Bcl-2 family member CED-9. CED-9 has been proposed to prevent death by sequestering CED-4 and proCED-3 in an inactive ternary complex, the apoptosome. In cells fated to die, CED-9 is, in turn, inactivated by the pro-apoptotic BH3 domain-containing protein EGL-1, likely through a direct protein-protein interaction. The structural and functional conservation of cell death genes between nematodes and mammals strongly suggests that the apoptotic program is ancient in origin and that all metazoans share a common mechanism of apoptotic cell killing.

Programmed cell death is a common feature during animal development. In the nematode C. elegans, more than 12 genes have been identified that function in the apoptotic killing and elimination of 131 of the 1090 cells that are generated during hermaphrodite development. These genes divide the process of programmed cell death into three distinct steps: execution of the death sentence; engulfment of dying cells; and degradation of dead, engulfed cells. Biochemical characterization of the genes in this pathway has led to the identification of an apoptotic machinery that mediates apoptotic death in this species. The proximal cause of apoptosis in C. elegans is the activation of the caspase homolog CED-3 from the inactive zymogen (proCED-3) into the mature protease. This activation is mediated by the Apaf-1 homolog CED-4. In cells that should survive, CED-3 and CED-4 pro-apoptotic activity is antagonized by the Bcl-2 family member CED-9. CED-9 has been proposed to prevent death by sequestering CED-4 and proCED-3 in an inactive ternary complex, the apoptosome. In cells fated to die, CED-9 is, in turn, inactivated by the pro-apoptotic BH3 domain-containing protein EGL-1, likely through a direct protein-protein interaction. The structural and functional conservation of cell death genes between nematodes and mammals strongly suggests that the apoptotic program is ancient in origin and that all metazoans share a common mechanism of apoptotic cell killing.

Citations

30 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1999
Deposited On:11 Feb 2008 12:20
Last Modified:05 Apr 2016 12:17
Publisher:Academic Press New York
ISSN:0079-9963
PubMed ID:10548877

Download

Full text not available from this repository.

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations