UZH-Logo

Maintenance Infos

Closed-chest small animal model to study myocardial infarction in an MRI environment in real time


O h-Ici, Darach; Jeuthe, Sarah; Dietrich, Thore; Berger, Felix; Kuehne, Titus; Kozerke, Sebastian; Messroghli, Daniel R (2015). Closed-chest small animal model to study myocardial infarction in an MRI environment in real time. International Journal of Cardiovascular Imaging, 31(1):115-121.

Abstract

Current models for real time study of the effects of myocardial ischemia/reperfusion have major limitations and confounders. Confounders include the surgical stresses of a thoracotomy and abnormal physiology of an open chest. The need to reposition the animal interferes with the study of the early changes associated with ischemia. Direct comparison of pre-ischemia and post-ischemia images is then difficult. We developed a novel “closed chest” model of ischemia/reperfusion to overcome these issues. Following thoracotomy, we sutured a balloon occluder to the left coronary artery of male Sprague–Dawley rats. We used both visual inspection and ECG to assess for successful occlusion and reperfusion of the coronary artery at the time of operation by brief inflation and deflation of the balloon. The tubing was then placed under the skin and the incision closed. Following a recovery period (5–10 days), the animals underwent MRI. We performed baseline assessment of left ventricle function, and repeated LV measurement during a 15-min coronary occlusion and again during a 60-min reperfusion period following reopening of the coronary artery. The occluder was successfully placed in 40 of 44 animals. Four developed intraoperative complications; two large myocardial infarction, two terminal bleeding. Six died in the week following surgery, [four sudden deaths (presumed arrhythmic), one anterior infarction, one sepsis]. Cine-MRI demonstrated localised hypokinesia in 31 of the remaining 34 animals. LV ejection fraction (EF) was reduced from 63 ± 7 % at baseline, to 49 ± 9 % during coronary occlusion. LV EF recovered to 61 ± 2 %. The area at risk on staining of the heart was 41.9 ± 15.8 %. This method allows the effects of ischemia/reperfusion to be studied before, during, and after coronary occlusion. Ischemia can be caused while the animal is in the MRI. This new and clinically relevant small animal model is a valuable tool to study the effects of single or repeated coronary occlusion/reperfusion in real-time.

Abstract

Current models for real time study of the effects of myocardial ischemia/reperfusion have major limitations and confounders. Confounders include the surgical stresses of a thoracotomy and abnormal physiology of an open chest. The need to reposition the animal interferes with the study of the early changes associated with ischemia. Direct comparison of pre-ischemia and post-ischemia images is then difficult. We developed a novel “closed chest” model of ischemia/reperfusion to overcome these issues. Following thoracotomy, we sutured a balloon occluder to the left coronary artery of male Sprague–Dawley rats. We used both visual inspection and ECG to assess for successful occlusion and reperfusion of the coronary artery at the time of operation by brief inflation and deflation of the balloon. The tubing was then placed under the skin and the incision closed. Following a recovery period (5–10 days), the animals underwent MRI. We performed baseline assessment of left ventricle function, and repeated LV measurement during a 15-min coronary occlusion and again during a 60-min reperfusion period following reopening of the coronary artery. The occluder was successfully placed in 40 of 44 animals. Four developed intraoperative complications; two large myocardial infarction, two terminal bleeding. Six died in the week following surgery, [four sudden deaths (presumed arrhythmic), one anterior infarction, one sepsis]. Cine-MRI demonstrated localised hypokinesia in 31 of the remaining 34 animals. LV ejection fraction (EF) was reduced from 63 ± 7 % at baseline, to 49 ± 9 % during coronary occlusion. LV EF recovered to 61 ± 2 %. The area at risk on staining of the heart was 41.9 ± 15.8 %. This method allows the effects of ischemia/reperfusion to be studied before, during, and after coronary occlusion. Ischemia can be caused while the animal is in the MRI. This new and clinically relevant small animal model is a valuable tool to study the effects of single or repeated coronary occlusion/reperfusion in real-time.

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 16 Jan 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2015
Deposited On:16 Jan 2015 11:54
Last Modified:05 Apr 2016 18:44
Publisher:Springer
ISSN:1569-5794
Additional Information:The final publication is available at Springer via http://dx.doi.org/10.1007/s10554-014-0539-0
Publisher DOI:https://doi.org/10.1007/s10554-014-0539-0
PubMed ID:25281422

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 804kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations