UZH-Logo

Maintenance Infos

Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis.


Fraser, A G; James, C; Evan, G I; Hengartner, M O (1999). Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis. Current Biology, 9(6):292-301.

Abstract

BACKGROUND: Inhibitor of apoptosis proteins (IAPs) suppress apoptotic cell death in several model systems and are highly conserved between insects and mammals. All IAPs contain at least one copy of the approximately 70 amino-acid baculovirus IAP repeat (BIR), and this domain is essential for the anti-apoptotic activity of the IAPs. Both the marked structural diversity of IAPs and the identification of BIR-containing proteins (BIRPs) in yeast, however, have led to the suggestion that BIRPs might play roles in other, as yet unidentified, cellular processes besides apoptosis. Survivin, a human BIRP, is upregulated 40-fold at G2-M phase and binds to mitotic spindles, although its role at the spindle is still unclear. RESULTS: We have identified and characterised two Caenorhabditis elegans BIRPs,BIR-1 and BIR-2; these proteins are the only BIRPs in C. elegans. The bir-1 gene is highly expressed during embryogenesis with detectable expression throughout other stages of development; bir-2 expression is detectable only in adults and embryos. Overexpression of bir-1 was unable to inhibit developmentally occurring cell death in C. elegans and inhibition of bir-1 expression did not increase cell death. Instead, embryos lacking bir-1 were unable to complete cytokinesis and they became multinucleate. This cytokinesis defect could be partially suppressed by transgenic expression of survivin, the mammalian BIRP most structurally related to BIR-1, suggesting a conserved role for BIRPs in the regulation of cytokinesis. CONCLUSIONS: BIR-1, a C. elegans BIRP, is probably not involved in the general regulation of apoptosis but is required for embryonic cytokinesis. We suggest that BIRPs may regulate cytoskeletal changes in diverse biological processes including cytokinesis and apoptosis.

Abstract

BACKGROUND: Inhibitor of apoptosis proteins (IAPs) suppress apoptotic cell death in several model systems and are highly conserved between insects and mammals. All IAPs contain at least one copy of the approximately 70 amino-acid baculovirus IAP repeat (BIR), and this domain is essential for the anti-apoptotic activity of the IAPs. Both the marked structural diversity of IAPs and the identification of BIR-containing proteins (BIRPs) in yeast, however, have led to the suggestion that BIRPs might play roles in other, as yet unidentified, cellular processes besides apoptosis. Survivin, a human BIRP, is upregulated 40-fold at G2-M phase and binds to mitotic spindles, although its role at the spindle is still unclear. RESULTS: We have identified and characterised two Caenorhabditis elegans BIRPs,BIR-1 and BIR-2; these proteins are the only BIRPs in C. elegans. The bir-1 gene is highly expressed during embryogenesis with detectable expression throughout other stages of development; bir-2 expression is detectable only in adults and embryos. Overexpression of bir-1 was unable to inhibit developmentally occurring cell death in C. elegans and inhibition of bir-1 expression did not increase cell death. Instead, embryos lacking bir-1 were unable to complete cytokinesis and they became multinucleate. This cytokinesis defect could be partially suppressed by transgenic expression of survivin, the mammalian BIRP most structurally related to BIR-1, suggesting a conserved role for BIRPs in the regulation of cytokinesis. CONCLUSIONS: BIR-1, a C. elegans BIRP, is probably not involved in the general regulation of apoptosis but is required for embryonic cytokinesis. We suggest that BIRPs may regulate cytoskeletal changes in diverse biological processes including cytokinesis and apoptosis.

Citations

190 citations in Web of Science®
190 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

110 downloads since deposited on 11 Feb 2008
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:25 March 1999
Deposited On:11 Feb 2008 12:20
Last Modified:05 Apr 2016 12:17
Publisher:Elsevier
ISSN:0960-9822
Publisher DOI:https://doi.org/10.1016/S0960-9822(99)80137-7
PubMed ID:10209096

Download

[img]
Preview
Filetype: PDF
Size: 216kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations