UZH-Logo

Maintenance Infos

Cystic gene dosage influences kidney lesions after nephron reduction


Le Corre, Stéphanie; Viau, Amandine; Burtin, Martine; El-Karoui, Khalil; Cnops, Yvette; Terryn, Sara; Debaix, Huguette; Bérissi, Sophie; Gubler, Marie-Claire; Devuyst, Olivier; Terzi, Fabiola (2015). Cystic gene dosage influences kidney lesions after nephron reduction. Nephron Clinical Practice, 129:42-51.

Abstract

Cystic kidney disease is characterized by the progressive development of multiple fluid-filled cysts. Cysts can be acquired, or they may appear during development or in postnatal life due to specific gene defects and lead to renal failure. The most frequent form of this disease is the inherited polycystic kidney disease (PKD). Experimental models of PKD showed that an increase of cellular proliferation and apoptosis as well as defects in apico-basal and planar cell polarity or cilia play a critical role in cyst development. However, little is known about the mechanisms and the mediators involved in acquired cystic kidney diseases (ACKD). In this study, we used the nephron reduction as a model to study the mechanisms underlying cyst development in ACKD. We found that tubular dilations after nephron reduction recapitulated most of the morphological features of ACKD. The development of tubular dilations was associated with a dramatic increase of cell proliferation. In contrast, the apico-basal polarity and cilia did not seem to be affected. Interestingly, polycystin 1 and fibrocystin were markedly increased and polycystin 2 was decreased in cells lining the dilated tubules, whereas the expression of several other cystic genes did not change. More importantly, Pkd1 haploinsufficiency accelerated the development of tubular dilations after nephron reduction, a phenotype that was associated to a further increase of cell proliferation. These data were relevant to humans ACKD, as cystic genes expression and the rate of cell proliferation were also increased. In conclusion, our study suggests that the nephron reduction can be considered a suitable model to study ACKD and that dosage of genes involved in PKD is also important in ACKD.

Cystic kidney disease is characterized by the progressive development of multiple fluid-filled cysts. Cysts can be acquired, or they may appear during development or in postnatal life due to specific gene defects and lead to renal failure. The most frequent form of this disease is the inherited polycystic kidney disease (PKD). Experimental models of PKD showed that an increase of cellular proliferation and apoptosis as well as defects in apico-basal and planar cell polarity or cilia play a critical role in cyst development. However, little is known about the mechanisms and the mediators involved in acquired cystic kidney diseases (ACKD). In this study, we used the nephron reduction as a model to study the mechanisms underlying cyst development in ACKD. We found that tubular dilations after nephron reduction recapitulated most of the morphological features of ACKD. The development of tubular dilations was associated with a dramatic increase of cell proliferation. In contrast, the apico-basal polarity and cilia did not seem to be affected. Interestingly, polycystin 1 and fibrocystin were markedly increased and polycystin 2 was decreased in cells lining the dilated tubules, whereas the expression of several other cystic genes did not change. More importantly, Pkd1 haploinsufficiency accelerated the development of tubular dilations after nephron reduction, a phenotype that was associated to a further increase of cell proliferation. These data were relevant to humans ACKD, as cystic genes expression and the rate of cell proliferation were also increased. In conclusion, our study suggests that the nephron reduction can be considered a suitable model to study ACKD and that dosage of genes involved in PKD is also important in ACKD.

Altmetrics

Downloads

36 downloads since deposited on 03 Feb 2015
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2015
Deposited On:03 Feb 2015 14:40
Last Modified:25 Jun 2016 07:51
Publisher:Karger
ISSN:1660-2110
Publisher DOI:https://doi.org/10.1159/000369312
PubMed ID:25531116
Permanent URL: https://doi.org/10.5167/uzh-104179

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 7MB
View at publisher
[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations