Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-1044

Hoffmans, R; Basler, K (2004). Identification and in vivo role of the Armadillo-Legless interaction. Development, 131(17):4393-4400.

View at publisher


The Wnt signalling system controls many fundamental processes during animal development and its deregulation has been causally linked to colorectal cancer. Transduction of Wnt signals entails the association of beta-catenin with nuclear TCF DNA-binding factors and the subsequent activation of target genes. Using genetic assays in Drosophila, we have recently identified a presumptive adaptor protein, Legless (Lgs), that binds to beta-catenin and mediates signalling activity by recruiting the transcriptional activator Pygopus (Pygo). Here, we characterize the beta-catenin/Lgs interaction and show: (1) that it is critically dependent on two acidic amino acid residues in the first Armadillo repeat of beta-catenin; (2) that it is spatially and functionally separable from the binding sites for TCF factors, APC and E-cadherin; (3) that it is required in endogenous as well as constitutively active forms of beta-catenin for Wingless signalling output in Drosophila; and (4) that in its absence animals develop with the same phenotypic consequences as animals lacking Lgs altogether. Based on these findings, and because Lgs and Pygo have human homologues that can substitute for their Drosophila counterparts, we infer that the beta-catenin/Lgs binding site may thus serve as an attractive drug target for therapeutic intervention in beta-catenin-dependent cancer progression.


41 citations in Web of Science®
40 citations in Scopus®
Google Scholar™



54 downloads since deposited on 11 Feb 2008
10 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Date:September 2004
Deposited On:11 Feb 2008 12:20
Last Modified:05 Apr 2016 12:17
Publisher:Company of Biologists
Publisher DOI:10.1242/dev.01296
PubMed ID:15294866

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page