A distinct pattern of disease-associated single nucleotide polymorphisms in IBD risk genes in a family with Crohn’s disease

Barthel, Christiane; Spalinger, Marianne R; Brunner, Jakob; Lang, Silvia; Fried, Michael; Rogler, Gerhard; Scharl, Michael

Abstract: Recent studies have identified more than 160 inflammatory bowel disease susceptibility loci and provided evidence for genetic heritability in disease pathogenesis. Here we describe a case of a 47-year-old White woman suffering from Crohn’s disease (CD), who had four children, two with CD and two with a factor V Leiden variation. We analysed the presence of single nucleotide polymorphisms in several CD susceptibility genes. SNP analysis was carried out using commercially available assays. The female CD patient had a positive inflammatory bowel disease family history. All of the patients had a mild disease course, without fistulae or symptomatic stenosis. The patient was heterozygous for risk variants of the genes encoding nucleotide oligomerization domain 2 (NOD2) and Toll-like receptor 5 (TLR5) and a homozygous carrier of both of the identified protein tyrosine phosphatase nonreceptor type 2 (PTPN2) risk alleles. The CD-affected daughter carried heterozygous risk alleles of the genes encoding TLR5, NOD2 and PTPN2. The son, with the earliest onset of disease in the family at the age of 12 years, was heterozygous for risk alleles of autophagy 16 like 1 (ATG16L1), TLR5, NOD2 and PTPN2. This study reports an interesting pattern of CD-associated single nucleotide polymorphisms in a family with CD. This report clearly supports the observation that genetic variations, especially in genes associated with the innate immune system, contribute to disease onset.

DOI: https://doi.org/10.1097/MEG.0000000000000083

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-105055
Published Version

Originally published at:
Barthel, Christiane; Spalinger, Marianne R; Brunner, Jakob; Lang, Silvia; Fried, Michael; Rogler, Gerhard; Scharl, Michael (2014). A distinct pattern of disease-associated single nucleotide polymorphisms in IBD risk genes in a family with Crohn’s disease. European Journal of Gastroenterology Hepatology, 26(7):803-806.
DOI: https://doi.org/10.1097/MEG.0000000000000083
A distinct pattern of disease-associated single nucleotide polymorphisms in IBD risk genes in a family with Crohn's disease

Christiane Barthela, Marianne R. Spalingera, Jakob Brunnerc, Silvia Langa, Michael Frieda,b, Gerhard Roglera,b and Michael Scharla,b

Recent studies have identified more than 160 inflammatory bowel disease susceptibility loci and provided evidence for genetic heritability in disease pathogenesis. Here we describe a case of a 47-year-old White woman suffering from Crohn's disease (CD), who had four children, two with CD and two with a factor V Leiden variation. We analysed the presence of single nucleotide polymorphisms in several CD susceptibility genes. SNP analysis was carried out using commercially available assays. The female CD patient had a positive inflammatory bowel disease family history. All of the patients had a mild disease course, without fistulae or symptomatic stenosis. The patient was heterozygous for risk variants of the genes encoding nucleotide oligomerization domain 2 (NOD2) and Toll-like receptor 5 (TLR5) and a homozygous carrier of both of the identified protein tyrosine phosphatase nonreceptor type 2 (PTPN2) risk alleles. The CD-affected daughter carried heterozygous risk alleles of the genes encoding TLR5, NOD2 and PTPN2. The son, with the earliest onset of disease in the family at the age of 12 years, was heterozygous for risk alleles of autophagy 16 like 1 (ATG16L1), TLR5, NOD2 and PTPN2. This study reports an interesting pattern of CD-associated single nucleotide polymorphisms in a family with CD. This report clearly supports the observation that genetic variations, especially in genes associated with the innate immune system, contribute to disease onset. *Eur J Gastroenterol Hepatol* 26:803–806 © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins.

European Journal of Gastroenterology & Hepatology 2014, 26:803–806

Keywords: autophagy 16 like 1, Crohn's disease, factor V Leiden mutation, nucleotide oligomerization domain 2, protein tyrosine phosphatase nonreceptor type 2, single nucleotide polymorphisms, Toll-like receptor 5

Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland. 2Division for Integrative Human Physiology, University of Zurich, Zurich, Switzerland. 3Department of Internal Medicine, Kantonsspital Glarus, Glarus, Switzerland and 4Division of Gastroenterology and Hepatology, Robert-Bosch-Hospital Stuttgart, Stuttgart, Germany

Correspondence to Michael Scharl, MD, Division of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland

Tel: +41 44 255 9519; fax: +41 44 255 9497; e-mail: michael.scharl@usz.ch

Received 14 January 2014 Accepted 14 February 2014

Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, which includes Crohn's disease (CD) and ulcerative colitis (UC). CD is characterized by a chronic and transmural inflammation that can occur anywhere in the gastrointestinal tract.

Environmental and genetic factors, as well as aberrant immune responses, have been considered as major aetiologies of IBD and CD in particular. Evidence suggests that an epithelial barrier defect, coupled with a dysfunctional immune response of the innate as well as the acquired immune system to commensal microbiota, resulting in either excessive upregulation or impaired downregulation of inflammatory events, drives the development of chronic intestinal inflammation [1]. The predispositions are genetically determined, and genetic variations, meaning single nucleotide polymorphisms (SNPs), in more than 160 gene loci have been associated with IBD [2,3].

On the basis of population-based studies and incidence cohorts, it has been well confirmed and demonstrated that there is a heritability for IBD, and relatives of an IBD patient have a significantly higher risk of also developing IBD as compared with the general population [4]. In CD, a large meta-analysis of genome-wide association studies has identified at least 71 replicated loci (meaning that they have been found in at least two independent studies), such as nucleotide oligomerization domain 2 (NOD2), autophagy 16 like 1 (ATG16L1), immunity-related GTPase family M protein (IRGM), Toll-like receptor 5 (TLR5), protein tyrosine phosphatase nonreceptor type 2 (PTPN2) and PTPN22 [5]. However, despite increasing knowledge about the functional relevance of these genes in the cellular and molecular context, the relevance of the presence of these mutations with respect to the onset of IBD is still unclear.

Here we report the case of a 47-year-old White woman suffering from CD, who had four children, two also with CD and two with factor V Leiden, and we analyse the presence of several important CD susceptibility genes by SNP analysis.

Case report

In April 2010, a 44-year-old female patient was admitted for active CD with abdominal pain and diarrhoea. Her current medication was steroids and azathioprine.
The patient was first diagnosed with CD in 2009 at the age of 43 years on the basis of radiological examination, colonoscopy and clinical presentation. She was a persistent smoker with a 30 pack-year history. Upon treatment with steroids and mesalazine (5-ASA) an improvement in disease activity was achieved. The therapy with mesalazine had to be stopped because of a general exanthema. Six months later another acute flare of CD had to be treated with steroids, and maintenance treatment with azathioprine was started. On treatment with azathioprine, stable remission was achieved and is still persistent.

Interestingly, the patient had a positive family history of CD and UC. The father of the patient had been diagnosed with UC and developed colorectal cancer in 1990. The patient is married and has four children. Two of them were also diagnosed with CD and two have a factor V Leiden mutation. The patient’s husband and father of her children neither suffers from IBD nor has a factor V Leiden mutation; however, he had undergone a kidney transplantation for end-stage kidney dysfunction due to glomerulonephritits.

One daughter was diagnosed with CD in 2011 at the age of 21 years. One son was diagnosed with CD in 2005 at the age of 12 years. Although both of them developed the disease at a young age, both of them have had a mild disease course so far with only azathioprine as maintenance therapy. Both children with factor V Leiden have had no complications until now. None of the family members have suffered from fistulae or relevant intestinal stenosis so far (Fig. 1). To the best of our knowledge, the two daughters without CD have not undergone endoscopy.

Genotyping

Given the family history, a genetic component of the disease seems obvious. To address the involvement of genetic variations, the patient, her husband and all her children were genotyped for eight common IBD-associated risk alleles in the gene loci encoding *NOD2* (SNP-8, rs2066844; SNP-12, rs2066845), *TLR5* (SNP ID: rs5744168), *ATG16L1* (SNP ID: rs2241880), *IRGM* (SNP ID: rs4958847), *PTPN22* (SNP ID: rs2476601; SNP ID: rs33996649) and *PTPN2* (SNP ID: rs2542151; SNP ID rs1893217). Genomic DNA was isolated from freshly collected blood samples using the QiAmp DNA Blood Minikit (Qiagen, Hilden, Germany). The variants were determined using commercially available SNP Genotyping Assays (Applied Biosystems, Carlsbad, California, USA) and TaqMan Genotyping Master Mix (Applied Biosystems) on a 7900HT Fast Real-Time PCR System using SDS 2.2 Software (Applied Biosystems).

Discussion

The detected variants are all linked to host response to bacteria. *NOD2* is an intracellular receptor recognizing the bacterial cell wall component muramyl dipeptide and is crucially involved in the initiation of an adequate host defence against invading pathogens [6]. Variants of *NOD2* have been identified as a prominent susceptibility factor.
for IBD [7], and loss of function results in defective immune response and ineffective bacterial handling. Interestingly, we only found a variation in the NOD2 SNP-8, but not in SNP-12.

ATG16L1 is a protein involved in autophagy modulation and the CD-associated T300A allele results in defective autophagy [8, 9]. Autophagy is an important cellular survival mechanism, but it is also involved in degradation and clearance of intracellular bacteria and effective antigen presentation. Further, it is linked at a functional level to NOD2 and both of them can directly interact to control the initiation of the adaptive immune response against invading bacteria [10, 11]. Although the presence of the heterozygous ATG16L1 variation is rather common, even among healthy individuals, we found it only in the son affected with CD, in the healthy father and in one of the daughters without CD.

TLR5 is an extracellular receptor sensing the conserved bacterial product flagellin. Defective TLR5 signalling results in poor proinflammatory response to enteric bacteria and variants are negatively associated with IBD [12]. The heterozygous variation was found in all family members affected by CD and also in one of the daughters without CD.

PTPN2 is a protein that controls proinflammatory signalling cascades, including pathways downstream of NOD2, and is involved in autophagy regulation [13]. The two IBDb-associated variants result in the expression of a dysfunctional protein that is ineffective in the regulation of proinflammatory signalling pathways [14]. Interestingly, the mother was a homozygous carrier of both of the IBDb risk variants. All of her children were heterozygous for both of these variations.

None of the family members had a homozygous or heterozygous variation within the IBDb-associated autophagy gene, IRGM, nor within the PTPN22 gene. The lack of variations within the PTPN22 gene, which is also involved in the regulation of NOD2 signalling and autophagy [15], in the CD patients is also of interest, as both of the variants are reported to protect from IBD [16].

Within the patient’s family we found an interesting distribution of the risk variants with an accumulation in the CD-affected members: the index patient is heterozygous for risk variants of the genes encoding the pathogen sensors NOD2 and TLR5, and is a homozygous carrier of both of the PTPN2 risk alleles. The CD-affected daughter carries one risk allele of both TLR5 and NOD2 and is heterozygous for both of the risk alleles of PTPN2. The son, with the earliest onset of disease in the family, has risk variants of all IBDb-associated SNPs detected within the family: he is heterozygous for the risk alleles of ATG16L1, TLR5 and NOD2, as well as both of the risk alleles of PTPN2. The father carries the risk variant of ATG16L1 but none of the other analysed SNPs. The nonaffected daughters are both heterozygous for the risk alleles of PTPN2 and carry either the risk variant of ATG16L1 or TLR5 but no variant of NOD2 (Table 1). These observations seem to support the hypothesis that an accumulation of several genetic variations within an individual increases the risk for developing CD.

Interestingly, both of the children without CD carry a factor V Leiden mutation, which represents a genetic disorder characterized by a poor anticoagulant response to activated protein C and a high risk for venous thromboembolism. Deep venous thrombosis and pulmonary embolism are the most common manifestations. The clinical expression of a factor V Leiden mutation is influenced by a number of factor V Leiden alleles, coexisting genetic and acquired thrombophilic disorders and also circumstantial risk factors [17, 18].

Thromboembolism is a well-described complication of IBD but knowledge about its possible role in the manifestation of this disease is still poor. The incidence fluctuates between 1 and 6% in clinical studies and 7 and 39% in autopsy studies [19–21]. The aetiology of thrombosis in IBD is multifactorial, but the exact mechanism remains unknown [22]. Several acquired prothrombotic risk factors include the inflammatory process per se, use of corticosteroids, surgical treatment, smoking and the use of oral contraceptives [23]. Genetic factors may also play a role in thrombosis in IBD patients. One of the most common genetic variants that affects the risk for thrombosis is factor V Leiden [21, 24]. During the last few years there have been several studies assessing whether there is an association between factor V Leiden mutation and CD: in the study by Liebman et al. [21], a factor V Leiden mutation was found in 36% of 11 IBD patients with a history of thromboembolism and in 4% of 51 IBD patients.

Table 1 Genetic variations within the family members

<table>
<thead>
<tr>
<th></th>
<th>ATG16L1</th>
<th>TLR5</th>
<th>IRGM</th>
<th>PTPN2_1</th>
<th>PTPN2_2</th>
<th>PTPN22_20</th>
<th>PTPN22_30</th>
<th>NOD2_8</th>
<th>NOD2_12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father</td>
<td>G/G</td>
<td>G/G</td>
<td>G/G</td>
<td>T/T</td>
<td>A/A</td>
<td>G/G</td>
<td>C/C</td>
<td>C/C</td>
<td>G/G</td>
</tr>
<tr>
<td>Mother</td>
<td>G/A</td>
<td>G/G</td>
<td>G/G</td>
<td>G/T</td>
<td>A/A</td>
<td>G/G</td>
<td>C/C</td>
<td>C/C</td>
<td>G/G</td>
</tr>
<tr>
<td>Daughter</td>
<td>G/G</td>
<td>G/A</td>
<td>G/G</td>
<td>G/G</td>
<td>G/T</td>
<td>A/A</td>
<td>G/G</td>
<td>C/C</td>
<td>G/G</td>
</tr>
<tr>
<td>Daughter</td>
<td>G/A</td>
<td>G/G</td>
<td>G/G</td>
<td>G/T</td>
<td>A/A</td>
<td>G/G</td>
<td>C/C</td>
<td>C/T</td>
<td>C/T</td>
</tr>
<tr>
<td>Daughter</td>
<td>G/G</td>
<td>G/A</td>
<td>G/G</td>
<td>G/T</td>
<td>A/A</td>
<td>G/G</td>
<td>C/C</td>
<td>C/G</td>
<td>G/G</td>
</tr>
<tr>
<td>Son</td>
<td>G/A</td>
<td>G/A</td>
<td>G/G</td>
<td>G/T</td>
<td>A/A</td>
<td>G/G</td>
<td>C/C</td>
<td>C/T</td>
<td>G/G</td>
</tr>
</tbody>
</table>

Line 2 represents the wild-type variant of each SNP. CD-affected individuals are represented in light grey.

CD, Crohn’s disease; SNP, single nucleotide polymorphism.
with no history of thromboembolism. Another study showed that factor V Leiden and prothrombin G20282A gene mutations were increased in IBD patients with a history of thromboembolism compared with IBD patients without a history of thromboembolism [21].

However, the limitation of our study is that we only present a single case of an interesting accumulation of CD cases in one single family. The two daughters without CD have a rather similar pattern of SNPs compared with the one daughter diagnosed with CD. Therefore, from our study, it is not possible to propose definite associations between the presence of a certain number of CD-associated SNPs and the onset of disease. Although our study highlights the role of genetic variations in the pathogenesis of CD, it is not sufficient to make significant associations between a genetic pattern consisting of a variety of CD-associated risk genes and the onset of CD.

Taken together, this family represents an interesting pattern of SNPs associated with CD and factor V Leiden. CD-affected family members accumulate several IBD-associated risk alleles of genes associated with the innate immune system. These observations clearly support the concept of genetic heritability in CD and underline the importance for further studies to identify the functional role of the IBD risk genes in the context of IBD pathogenesis.

Acknowledgements

This research was supported by a Qualifizierungsstipendium der Robert-Bosch-Stiftung, Stuttgart, Germany, to C.B., a grant from Fonds zur Förderung des akademischen Nachwuchses (FAN) of the Zürcher Universitätsverehr (ZU NV) to M.S., a research grant from the Swiss Philanthropy Foundation to M.S. and G.R., a research grant from the Swiss IBD Cohort (Grant No. 330030-120312) and the Swiss IBD Cohort (Grant No. 3347CO-108792) and by the Zurich Center for Integrative Human Physiology (ZIHP) of the University of Zurich. The funding institutions had no role in designing the study, in the collection, analysis and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

C.B., J.B., M.F., G.R. and M.S. were involved in patient care; M.R.S. and S.L. were involved in genotyping analysis. G.R. and M.S. conceived the experimental study. All authors wrote, corrected and approved the manuscript.

Conflicts of interest

There are no conflicts of interest.

References