UZH-Logo

Maintenance Infos

Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species


Mächler, Elvira; Deiner, Kristy; Steinmann, Patrick; Altermatt, Florian (2014). Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species. Freshwater Science, 33(4):1174-1183.

Abstract

Accurate knowledge of the distribution of rare, indicator, or invasive species is required for conservation and management decisions. However, species monitoring done with conventional methods may have limitations, such as being laborious in terms of cost and time, and often requires invasive sampling of specimens. Environmental DNA (eDNA) has been identified as a molecular tool that could overcome these limitations, particularly in aquatic systems. Detection of rare and invasive amphibians and fish in lake and river systems has been effective, but few studies have targeted macroinvertebrates in aquatic systems. We expanded eDNA techniques to a broad taxonomic array of macroinvertebrate species in river and lake systems. We were able to detect 5 of 6 species (Ancylus fluviatilis, Asellus aquaticus, Baetis buceratus, Crangonyx pseudogracilis, and Gammarus pulex) with an eDNA method in parallel to the conventional kicknet-sampling method commonly applied in aquatic habitats. Our eDNA method showed medium to very high consistency with the data from kicknet-sampling and was able to detect both indicator and nonnative macroinvertebrates. Furthermore, our primers detected target DNA in concentrations down to 10–5 ng/µL of total extracted tissue DNA in the absence of background eDNA in the reaction. We demonstrate that an eDNA surveillance method based on standard PCR can deliver biomonitoring data across a wide taxonomic range of macroinvertebrate species (Gastropoda, Isopoda, Ephemeroptera, and Amphipoda) in riverine habitats and may offer the possibility to deliver data on a more refined time scale than conventional methods when focusing on single or few target species. Such information based on nondestructive sampling may allow rapid management decisions and actions.

Abstract

Accurate knowledge of the distribution of rare, indicator, or invasive species is required for conservation and management decisions. However, species monitoring done with conventional methods may have limitations, such as being laborious in terms of cost and time, and often requires invasive sampling of specimens. Environmental DNA (eDNA) has been identified as a molecular tool that could overcome these limitations, particularly in aquatic systems. Detection of rare and invasive amphibians and fish in lake and river systems has been effective, but few studies have targeted macroinvertebrates in aquatic systems. We expanded eDNA techniques to a broad taxonomic array of macroinvertebrate species in river and lake systems. We were able to detect 5 of 6 species (Ancylus fluviatilis, Asellus aquaticus, Baetis buceratus, Crangonyx pseudogracilis, and Gammarus pulex) with an eDNA method in parallel to the conventional kicknet-sampling method commonly applied in aquatic habitats. Our eDNA method showed medium to very high consistency with the data from kicknet-sampling and was able to detect both indicator and nonnative macroinvertebrates. Furthermore, our primers detected target DNA in concentrations down to 10–5 ng/µL of total extracted tissue DNA in the absence of background eDNA in the reaction. We demonstrate that an eDNA surveillance method based on standard PCR can deliver biomonitoring data across a wide taxonomic range of macroinvertebrate species (Gastropoda, Isopoda, Ephemeroptera, and Amphipoda) in riverine habitats and may offer the possibility to deliver data on a more refined time scale than conventional methods when focusing on single or few target species. Such information based on nondestructive sampling may allow rapid management decisions and actions.

Citations

22 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:eDNA, kicknet sampling, lotic systems, cytochrome oxidase I, water quality assessment, EPT, Amphipoda
Language:English
Date:2014
Deposited On:04 Feb 2015 09:45
Last Modified:05 Apr 2016 18:51
Publisher:North American Benthological Society
ISSN:2161-9549
Publisher DOI:https://doi.org/10.1086/678128

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations