UZH-Logo

Maintenance Infos

Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study


Demel, Anja; Wolf, Martin; Poets, Christian F; Franz, Axel R (2014). Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study. BMC Pediatrics, 14:206.

Abstract

BACKGROUND Brain-water content (BWC) decreases with maturation of the brain and potentially affects parameters of cerebral oxygenation determined by near-infrared spectroscopy (NIRS). Most commercially available devices do not take these maturational changes into account. The aim of this study was to determine the effect of different assumptions for BWC on parameters of cerebral oxygenation in preterm infants. METHODS Concentrations of oxy-, deoxy- and total hemoglobin and regional cerebral oxygen saturation (rcStO2) were calculated based on absolute coefficients of absorption and scattering determined by multi-distance Frequency-Domain-NIRS assuming BWCs of 75-95%, which may be encountered in newborn infants depending on gestational and postnatal age. RESULTS This range of BWC gave rise to a linear modification of the assessed NIRS parameters with a maximum change of 10%. This may result in an absolute overestimation of rcStO2 by (median (range)) 4 (1-8)%, if the calculation is based on the lowest BWC (75%) in an extremely preterm infant with an anticipated BWC of 95%. CONCLUSION Clinicians wishing to rely on parameters of cerebral oxygenation determined by NIRS should consider that maturational changes in BWC not taken into account by most devices may result in a deviation of cerebral oxygenation readings by up to 8% from the correct value.

BACKGROUND Brain-water content (BWC) decreases with maturation of the brain and potentially affects parameters of cerebral oxygenation determined by near-infrared spectroscopy (NIRS). Most commercially available devices do not take these maturational changes into account. The aim of this study was to determine the effect of different assumptions for BWC on parameters of cerebral oxygenation in preterm infants. METHODS Concentrations of oxy-, deoxy- and total hemoglobin and regional cerebral oxygen saturation (rcStO2) were calculated based on absolute coefficients of absorption and scattering determined by multi-distance Frequency-Domain-NIRS assuming BWCs of 75-95%, which may be encountered in newborn infants depending on gestational and postnatal age. RESULTS This range of BWC gave rise to a linear modification of the assessed NIRS parameters with a maximum change of 10%. This may result in an absolute overestimation of rcStO2 by (median (range)) 4 (1-8)%, if the calculation is based on the lowest BWC (75%) in an extremely preterm infant with an anticipated BWC of 95%. CONCLUSION Clinicians wishing to rely on parameters of cerebral oxygenation determined by NIRS should consider that maturational changes in BWC not taken into account by most devices may result in a deviation of cerebral oxygenation readings by up to 8% from the correct value.

Citations

2 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

11 downloads since deposited on 05 Feb 2015
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2014
Deposited On:05 Feb 2015 13:41
Last Modified:31 Oct 2016 11:56
Publisher:BioMed Central
ISSN:1471-2431
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-2431-14-206
PubMed ID:25138045
Permanent URL: https://doi.org/10.5167/uzh-105753

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 427kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations