UZH-Logo

In vitro norepinephrine significantly activates isolated platelets from healthy volunteers and critically ill patients following severe traumatic brain injury


Tschuor, C; Asmis, L M; Lenzlinger, P M; Tanner, M; Härter, L; Keel, M; Stocker, R; Stover, J F (2008). In vitro norepinephrine significantly activates isolated platelets from healthy volunteers and critically ill patients following severe traumatic brain injury. Critical Care, 12:R80:1-12.

Abstract

INTRODUCTION: Norepinephrine, regularly used to increase systemic arterial blood pressure and thus improve cerebral perfusion following severe traumatic brain injury (TBI), may activate platelets. This, in turn, could promote microthrombosis formation and induce additional brain damage. METHODS: The objective of this study was to investigate the influence of norepinephrine on platelets isolated from healthy volunteers and TBI patients during the first two post-traumatic weeks. A total of 18 female and 18 male healthy volunteers of different age groups were recruited, while 11 critically ill TBI patients admitted consecutively to our intensive care unit were studied. Arterial and jugular venous platelets were isolated from norepinephrine-receiving TBI patients; peripheral venous platelets were studied in healthy volunteers. Concentration-dependent functional alterations of isolated platelets were analyzed by flow cytometry, assessing changes in surface P-selectin expression and platelet-derived microparticles before and after in vitro stimulation with norepinephrine ranging from 10 nM to 100 microM. The thrombin receptor-activating peptide (TRAP) served as a positive control. RESULTS: During the first week following TBI, norepinephrine-mediated stimulation of isolated platelets was significantly reduced compared with volunteers (control). In the second week, the number of P-selectin- and microparticle-positive platelets was significantly decreased by 60% compared with the first week and compared with volunteers. This, however, was associated with a significantly increased susceptibility to norepinephrine-mediated stimulation, exceeding changes observed in volunteers and TBI patients during the first week. This pronounced norepinephrine-induced responsiveness coincided with increased arterio-jugular venous difference in platelets, reflecting intracerebral adherence and signs of cerebral deterioration reflected by elevated intracranial pressure and reduced jugular venous oxygen saturation. CONCLUSION: Clinically infused norepinephrine might influence platelets, possibly promoting microthrombosis formation. In vitro stimulation revealed a concentration- and time-dependent differential level of norepinephrine-mediated platelet activation, possibly reflecting changes in receptor expression and function. Whether norepinephrine should be avoided in the second post-traumatic week and whether norepinephrine-stimulated platelets might induce additional brain damage warrant further investigations.

INTRODUCTION: Norepinephrine, regularly used to increase systemic arterial blood pressure and thus improve cerebral perfusion following severe traumatic brain injury (TBI), may activate platelets. This, in turn, could promote microthrombosis formation and induce additional brain damage. METHODS: The objective of this study was to investigate the influence of norepinephrine on platelets isolated from healthy volunteers and TBI patients during the first two post-traumatic weeks. A total of 18 female and 18 male healthy volunteers of different age groups were recruited, while 11 critically ill TBI patients admitted consecutively to our intensive care unit were studied. Arterial and jugular venous platelets were isolated from norepinephrine-receiving TBI patients; peripheral venous platelets were studied in healthy volunteers. Concentration-dependent functional alterations of isolated platelets were analyzed by flow cytometry, assessing changes in surface P-selectin expression and platelet-derived microparticles before and after in vitro stimulation with norepinephrine ranging from 10 nM to 100 microM. The thrombin receptor-activating peptide (TRAP) served as a positive control. RESULTS: During the first week following TBI, norepinephrine-mediated stimulation of isolated platelets was significantly reduced compared with volunteers (control). In the second week, the number of P-selectin- and microparticle-positive platelets was significantly decreased by 60% compared with the first week and compared with volunteers. This, however, was associated with a significantly increased susceptibility to norepinephrine-mediated stimulation, exceeding changes observed in volunteers and TBI patients during the first week. This pronounced norepinephrine-induced responsiveness coincided with increased arterio-jugular venous difference in platelets, reflecting intracerebral adherence and signs of cerebral deterioration reflected by elevated intracranial pressure and reduced jugular venous oxygen saturation. CONCLUSION: Clinically infused norepinephrine might influence platelets, possibly promoting microthrombosis formation. In vitro stimulation revealed a concentration- and time-dependent differential level of norepinephrine-mediated platelet activation, possibly reflecting changes in receptor expression and function. Whether norepinephrine should be avoided in the second post-traumatic week and whether norepinephrine-stimulated platelets might induce additional brain damage warrant further investigations.

Citations

11 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

85 downloads since deposited on 28 Jan 2009
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Hematology
04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Intensive Care Medicine
04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2008
Deposited On:28 Jan 2009 14:07
Last Modified:05 Apr 2016 12:50
Publisher:BioMed Central
ISSN:1364-8535
Additional Information:Free full text article
Publisher DOI:10.1186/cc6931
Official URL:http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=2481479&blobtype=pdf
PubMed ID:18564410
Permanent URL: http://doi.org/10.5167/uzh-10617

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations