UZH-Logo

Maintenance Infos

Secondary burn progression decreased by erythropoietin


Tobalem, Mickaël; Harder, Yves; Rezaeian, Farid; Wettstein, Reto (2013). Secondary burn progression decreased by erythropoietin. Critical Care Medicine, 41(4):963-971.

Abstract

OBJECTIVE: To investigate whether systemic erythropoietin administration can prevent secondary burn progression in an experimental model and to elucidate the underlying mechanisms.
DESIGN: Prospective study.
SETTING: University-based laboratory research.
SUBJECTS: Twenty-one male Wistar rats.
INTERVENTIONS: The burn comb model creates four rectangular burned surfaces that are intercalated by three unburned zones (interspaces) prone to secondary necrosis. Twenty-one animals were randomized to three experimental groups: 1) Local cooling with water for 20 minutes (control, 17°C); 2) and 3) local cooling with water and intraperitoneal erythropoietin once a day for five days starting 45 minutes after burn injury (500 IU/kg body weight: EPO 500 or 2500 IU/kg body weight: EPO 2500).
MEASUREMENTS AND MAIN RESULTS: Secondary burn progression-both in depth (histology) and in surface (planimetry)-as well as interspace perfusion (laser Doppler flowmetry) and hematocrit were analyzed. Further, dilatory response (inducible nitric oxide synthase expression), inflammation (leukocyte count), and angiogenesis (CD31 expression) were assessed. Finally, wound healing time and contracture rate were reported. Burn progression resulted in complete dermal destruction as well as in important interspace necrosis in control animals, whereas burn progression was significantly reduced in a dose-dependent manner in animals treated with erythropoietin. Tissue protection was associated with an increased interspace perfusion with EPO 500, but not with EPO 2500, and was paralleled by a significant increase in inducible nitric oxide synthase expression and decreased inflammation, independent of the erythropoietin dosage. EPO 2500 led to a significant increase of hematocrit at day 4. Finally, faster wound healing and less contracture were observed in animals treated with EPO 500 only.
CONCLUSIONS: Erythropoietin represents an easy-to-use therapeutic approach to prevent secondary burn progression, i.e., to control damage after burn injury. It preserves microcirculatory perfusion within the endangered areas in a dose-dependent manner.

OBJECTIVE: To investigate whether systemic erythropoietin administration can prevent secondary burn progression in an experimental model and to elucidate the underlying mechanisms.
DESIGN: Prospective study.
SETTING: University-based laboratory research.
SUBJECTS: Twenty-one male Wistar rats.
INTERVENTIONS: The burn comb model creates four rectangular burned surfaces that are intercalated by three unburned zones (interspaces) prone to secondary necrosis. Twenty-one animals were randomized to three experimental groups: 1) Local cooling with water for 20 minutes (control, 17°C); 2) and 3) local cooling with water and intraperitoneal erythropoietin once a day for five days starting 45 minutes after burn injury (500 IU/kg body weight: EPO 500 or 2500 IU/kg body weight: EPO 2500).
MEASUREMENTS AND MAIN RESULTS: Secondary burn progression-both in depth (histology) and in surface (planimetry)-as well as interspace perfusion (laser Doppler flowmetry) and hematocrit were analyzed. Further, dilatory response (inducible nitric oxide synthase expression), inflammation (leukocyte count), and angiogenesis (CD31 expression) were assessed. Finally, wound healing time and contracture rate were reported. Burn progression resulted in complete dermal destruction as well as in important interspace necrosis in control animals, whereas burn progression was significantly reduced in a dose-dependent manner in animals treated with erythropoietin. Tissue protection was associated with an increased interspace perfusion with EPO 500, but not with EPO 2500, and was paralleled by a significant increase in inducible nitric oxide synthase expression and decreased inflammation, independent of the erythropoietin dosage. EPO 2500 led to a significant increase of hematocrit at day 4. Finally, faster wound healing and less contracture were observed in animals treated with EPO 500 only.
CONCLUSIONS: Erythropoietin represents an easy-to-use therapeutic approach to prevent secondary burn progression, i.e., to control damage after burn injury. It preserves microcirculatory perfusion within the endangered areas in a dose-dependent manner.

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 03 Mar 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Reconstructive Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:03 Mar 2015 16:30
Last Modified:05 Apr 2016 18:54
Publisher:Lippincott Williams & Wilkins
ISSN:0090-3493
Publisher DOI:https://doi.org/10.1097/CCM.0b013e318275cee7
PubMed ID:23324953
Permanent URL: https://doi.org/10.5167/uzh-106181

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations