Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-10624

Sakowitz, O W; Stover, J F; Sarrafzadeh, A S; Unterberg, A W; Kiening, K L (2007). Effects of mannitol bolus administration on intracranial pressure, cerebral extracellular metabolites, and tissue oxygenation in severely head-injured patients. Journal of Trauma - Injury Infection & Critical Care, 62(2):292-298.

[img] PDF - Registered users only
View at publisher


BACKGROUND: Osmotic agents are widely used to lower elevated intracranial pressure (ICP). However, little data are available regarding cerebral oxygenation and metabolism in the traumatized brains studied under clinical conditions. The present prospective, open-labeled clinical study was designed to investigate whether administration of mannitol, with the aim of reducing moderate intracranial hypertension, improves cerebral metabolism and oxygenation in patients after severe traumatic brain injury (TBI). METHODS: Multimodal cerebral monitoring (MCM), consisting of intraparenchymal ICP, tissue oxygenation (ptiO2), and micro dialysis measurements was initiated in six male TBI patients (mean age 45 years; Glasgow Coma Scale score <9). A total of 14 mannitol boli (20%, 0.5g/kg, 20 minutes infusion time) were administered to treat ICP exceeding 20 mm Hg (2.7 kPa). Temporal alterations determined by MCM after mannitol infusions were recorded for 120 minutes. Microdialysates were assayed immediately for extracellular glucose, lactate, pyruvate, and glutamate concentrations. RESULTS: Elevated ICP was successfully treated in all cases. This effect was maximal 40 minutes after start of infusion (25 +/- 6 mm Hg [3.3 +/- 0.8 kPa] to 17 +/- 3 mm Hg [2.3 +/- 0.4 kPa], p < 0.05) and lasted up to 100 minutes. Cerebral ptiO2 remained unaffected (21 +/- 5 mm Hg [2.8 +/- 0.7 kPa] to 23 +/- 6 mm Hg [3.1 +/- 0.8 kPa], n.s.). Microdialysate concentrations of all analytes rose unspecifically by 10% to 40% from baseline, reaching maximum concentrations 40 to 60 minutes after start of the infusion. CONCLUSIONS: Mannitol efficiently reduces increased ICP. At an ICP of up to 30 mm Hg [4 kPa] it does not affect cerebral oxygenation. Unspecific increases of extracellular fluid metabolites can be explained by transient osmotic dehydration. Additional mechanisms, such as increased cerebral perfusion and blood volume, might explain an accelerated return to baseline.


32 citations in Web of Science®
38 citations in Scopus®
Google Scholar™



2 downloads since deposited on 18 Mar 2009
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Intensive Care Medicine
Dewey Decimal Classification:610 Medicine & health
Deposited On:18 Mar 2009 13:09
Last Modified:05 Apr 2016 12:50
Publisher:Lippincott Wiliams & Wilkins
Publisher DOI:10.1097/01.ta.0000203560.03937.2d
PubMed ID:17297315

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page