UZH-Logo

Maintenance Infos

Visualization of rat pial microcirculation using the novel orthogonal polarized spectral (OPS) imaging after brain injury


Thomale, U W; Schaser, K D; Unterberg, A W; Stover, J F (2001). Visualization of rat pial microcirculation using the novel orthogonal polarized spectral (OPS) imaging after brain injury. Journal of Neuroscience Methods, 108(1):85-90.

Abstract

Recently, the novel optical system, orthogonal polarized spectral (OPS) imaging was developed to visualize microcirculation. Investigation of changes in microcirculation is essential for physiological, pathophysiological, and pharmacological studies. In the present study applicability of OPS imaging was assessed to study pial microcirculation in normal and traumatized rat brain. High quality images of rat pial microcirculation in normal and traumatized rats were generated with the OPS imaging, allowing to easily differentiate arterioles and venules with the dura remaining intact. In non-traumatized rats, mean vessel diameter of arterioles and venules of five different cortical regions was 19.1+/-2.7 and 22.2+/-1.4 microm, respectively. In the early phase following focal cortical contusion vessel diameter was significantly decreased in arterioles by 28% while diameter in venules was significantly increased by 27%. For technical reasons velocity in arterioles was not measurable. In venules, mean flow velocity of 0.68+/-0.08 mm/s was significantly decreased by 50% at 30 min after trauma. OPS imaging is an easy to use optical system allowing to generate high quality images and to reliably investigate pial microcirculation without having to remove the dura. This technique opens the possibility to perform longitudinal studies investigating changes in pial microcirculation.

Recently, the novel optical system, orthogonal polarized spectral (OPS) imaging was developed to visualize microcirculation. Investigation of changes in microcirculation is essential for physiological, pathophysiological, and pharmacological studies. In the present study applicability of OPS imaging was assessed to study pial microcirculation in normal and traumatized rat brain. High quality images of rat pial microcirculation in normal and traumatized rats were generated with the OPS imaging, allowing to easily differentiate arterioles and venules with the dura remaining intact. In non-traumatized rats, mean vessel diameter of arterioles and venules of five different cortical regions was 19.1+/-2.7 and 22.2+/-1.4 microm, respectively. In the early phase following focal cortical contusion vessel diameter was significantly decreased in arterioles by 28% while diameter in venules was significantly increased by 27%. For technical reasons velocity in arterioles was not measurable. In venules, mean flow velocity of 0.68+/-0.08 mm/s was significantly decreased by 50% at 30 min after trauma. OPS imaging is an easy to use optical system allowing to generate high quality images and to reliably investigate pial microcirculation without having to remove the dura. This technique opens the possibility to perform longitudinal studies investigating changes in pial microcirculation.

Citations

12 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Sep 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Intensive Care Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:15 July 2001
Deposited On:18 Sep 2009 09:02
Last Modified:05 Apr 2016 12:51
Publisher:Elsevier
ISSN:0165-0270
Publisher DOI:10.1016/S0165-0270(01)00375-2
PubMed ID:11459621
Permanent URL: http://doi.org/10.5167/uzh-10658

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations