UZH-Logo

Maintenance Infos

New devices for TAVI: Technologies and initial clinical experiences


Taramasso, Maurizio; Pozzoli, Alberto; Latib, Azeem; La Canna, Giovanni; Colombo, Antonio; Maisano, Francesco; Alfieri, Ottavio (2014). New devices for TAVI: Technologies and initial clinical experiences. Nature Reviews. Cardiology, 11(3):157-167.

Abstract

Treatment of aortic stenosis in high-risk surgical patients has been modified in the past 10 years owing to the introduction of transcatheter aortic valve implantation (TAVI). Several issues affecting outcomes with implantation of the first-generation TAVI devices remain unresolved, including haemorrhagic and vascular complications, neurological events, rhythm disturbances, and paravalvular leakage. Further technological improvements are, therefore, required before the indications for TAVI can be extended to young and low-risk patients with aortic stenosis. Many new-generation TAVI devices are currently in the early stages of clinical evaluation. Modifications in the new devices include the ability to reposition the valve before final deployment, features to reduce paravalvular leakage, and the introduction of low-profile delivery systems. The aim of this Review is to provide an overview of the new-generation transcatheter valvular technologies, including initial clinical reports.

Treatment of aortic stenosis in high-risk surgical patients has been modified in the past 10 years owing to the introduction of transcatheter aortic valve implantation (TAVI). Several issues affecting outcomes with implantation of the first-generation TAVI devices remain unresolved, including haemorrhagic and vascular complications, neurological events, rhythm disturbances, and paravalvular leakage. Further technological improvements are, therefore, required before the indications for TAVI can be extended to young and low-risk patients with aortic stenosis. Many new-generation TAVI devices are currently in the early stages of clinical evaluation. Modifications in the new devices include the ability to reposition the valve before final deployment, features to reduce paravalvular leakage, and the introduction of low-profile delivery systems. The aim of this Review is to provide an overview of the new-generation transcatheter valvular technologies, including initial clinical reports.

Citations

4 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiovascular Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:March 2014
Deposited On:19 Feb 2015 08:08
Last Modified:05 Apr 2016 18:56
Publisher:Nature Publishing Group
ISSN:1759-5002
Publisher DOI:https://doi.org/10.1038/nrcardio.2013.221
PubMed ID:24445486

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations