Cost-effectiveness of health research study participant recruitment strategies: A systematic review

Huynh, L; Johns, B; Liu, S-H; Vedula, S S; Li, T; Puhan, Milo A

Abstract: Background: A large fraction of the cost of conducting clinical trials is allocated to recruitment of participants. A synthesis of findings from studies that evaluate the cost and effectiveness of different recruitment strategies will inform investigators in designing cost-efficient clinical trials. Purpose: To systematically identify, assess, and synthesize evidence from published comparisons of the cost and yield of strategies for recruitment of participants to health research studies. Methods: We included randomized studies in which two or more strategies for recruitment of participants had been compared. We focused our economic evaluation on studies that randomized participants to different recruitment strategies. Results: We identified 10 randomized studies that compared recruitment strategies, including monetary incentives (cash or prize), direct contact (letters or telephone call), and medical referral strategies. Only two of the 10 studies compared strategies for recruiting participants to clinical trials. We found that allocating additional resources to recruit participants using monetary incentives or direct contact yielded between 4% and 23% additional participants compared to using neither strategy. For medical referral, recruitment of prostate cancer patients by nurses was cost-saving compared to recruitment by consultant urologists. For all underlying study designs, monetary incentives cost more than direct contact with potential participants, with a median incremental cost per recruitment ratio of Intl72 (Intl—International dollar, a theoretical unit of currency) for monetary incentive strategy compared to Intl28 for direct contact strategy. Only monetary incentives and source of referral were evaluated for recruiting participants to clinical trials. Limitations: We did not review studies that presented non-monetary cost or lost opportunity cost. We did not adjust for the number of study recruitments. Conclusions: Systematic and explicit reporting of cost and effectiveness of recruitment strategies from randomized comparisons is required to aid investigators in selecting cost-efficient strategies for recruiting participants to health research studies, including clinical trials.

DOI: https://doi.org/10.1177/1740774514540371

Posted at the Zurich Open Repository and Archive, University of Zurich

ZORA URL: https://doi.org/10.5167/uzh-106671

Accepted Version

Title:
Cost-effectiveness of health research study participant recruitment strategies – a systematic review

Word Count: 3,290 (max word 5000)

Authors:
Lynn Huynh, MBA, DrPH, Benjamin Johns, MA, PhD, Su-Hsun Liu, MD, PhD, S. Swaroop Vedula, MD, PhD, Tianjing Li, MD, PhD, and Milo A. Puhan, MD, PhD

Institutional Affiliation:
Lynn Huynh
Analysis Group, Inc., Boston, Massachusetts, USA

Benjamin Johns
Department of International Health, Abt Associates, Inc., Bethesda, Maryland, USA

Su-Hsun Liu
Department of Family Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan

S. Swaroop Vedula
Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland, USA

Tianjing Li
Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

Milo A. Puhan
Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland
Corresponding author

Lynn Huynh

Analysis Group, Inc.

111 Huntington Ave, Tenth Floor, Boston, MA 02199

Email: lhuynh@jhsph.edu
Abstract

Background: A large fraction of the cost of conducting clinical trials is allocated to recruitment of participants. A synthesis of findings from studies that evaluate the cost and effectiveness of different recruitment strategies will inform investigators in designing cost-efficient clinical trials.

Purpose: Systematically identify, assess, and synthesize evidence from published comparisons of the cost and yield of strategies for recruitment of participants to health research studies.

Methods: We included randomized studies in which two or more strategies for recruitment of participants had been compared. We focused our economic evaluation on studies that randomized participants to different recruitment strategies.

Results: We identified 10 randomized studies that compared recruitment strategies, including monetary incentives (cash or prize), direct contact (letters or telephone call), and medical referral strategies. Only two of the 10 studies compared strategies for recruiting participants to clinical trials. We found that allocating additional resources to recruit participants using monetary incentives or direct contact yielded between 4% and 23% additional participants compared to using no strategies. For medical referral, recruitment of prostate cancer patients by nurses was cost-saving compared to recruitment by consultant urologists. For all underlying study designs, monetary incentives cost more than direct contact with potential participants, with a median incremental cost per recruitment ratio (ICER) of 72 (International dollar [Int$], a theoretical unit of currency) for monetary incentive strategy compared to 28 Int$ for
direct contact strategy. Only monetary incentives and source of referral were evaluated for recruiting participants into clinical trials.

Limitations: We did not review studies that presented non-monetary cost or lost opportunity cost. We did not adjust for the number of study recruitment sites or the study duration in our economic evaluation analysis.

Conclusions: Systematic and explicit reporting of cost and effectiveness of recruitment strategies from randomized comparisons is required to aid investigators to select cost-efficient strategies for recruiting participants to health research studies including clinical trials.

Key words: cost of conducting health research studies, recruitment, economic evaluation, recruitment, recruitment effectiveness, clinical trial efficiency
Introduction

A large fraction of the cost of conducting health research studies including clinical trials lies in the recruitment of participants. Maximizing recruitment and ensuring high follow-up rates with minimal expenditure are important financially, ethically, and statistically (i.e., to obtain adequate statistical power for hypothesis testing or adequate precision). In economics and operations research, efficiency is described as a set of structures and processes that aim to achieve high performance at minimal cost. In the context of the design and conduct of clinical trials, we consider efficiency as the minimal cost to carry out a trial while still achieving satisfactory statistical power.

Approaches to improving the operational efficiency of clinical trials and approaches to enhancing clinical trial designs, study start-up, data quality, and adverse event reporting have been discussed in the literature. It is critical to employ design strategies that minimize costs while maintaining adequate power. More formally, cost-effectiveness models can be built to examine the trade-offs between cost and benefits of different methods for conducting a clinical trial while optimizing statistical power.

Recruiting participants to health research studies is resource intensive and has been recognized as a challenge by many investigators. Recruitment strategies can be broadly categorized as direct contact (e.g., telephone call to potential participants), community outreach, mass media, referrals, and incentives (e.g., cash or gift card to reimburse participants' time). Systematic reviews on strategies to recruit participants to research studies have been previously performed, but these reviews focused on the effectiveness of the strategies and did not report the cost of the recruitment. Some
recruitment strategies may be more efficient than others, but cost more. The objective of this study was to systematically identify, assess, and synthesize studies that compared different recruitment strategies on the effectiveness and cost of recruitment.

Methods

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) in reporting our systematic review. 19

Criteria for selecting studies

We included randomized controlled trials (RCTs) that had compared two or more operational processes, defined as strategies for recruiting participants into health research studies. To be eligible, a study must have reported monetary cost directly related to operational processes (recruitment of participants). We excluded studies that reported cost only in a non-monetary form or cost unrelated to participant recruitment, such as the cost to attend clinic for medical services (e.g., cost for national immunization programs or annual mammography examinations).

Search strategy

We searched PubMed (1950 – 2010), the Cochrane Library (2010, Issue 4) which includes the Cochrane Methodology Register and the Cochrane Central Register of Controlled Trials (CENTRAL), Current Index to Statistics-Extended Database (CIS-ED) (1967 – 2009), EMBASE (1980-2010), and ISI Web of Science (1900 – 2010) using a search strategy developed by LH and reviewed by a medical informationist. We also handsearched references of included studies, and contacted experts at the Johns Hopkins Center for Clinical Trials for any additional potentially eligible studies. We completed the search in August 2011. We used various terms related to study design,
recruitment of participants, cost, and power. The complete search strategies are available in the web supplemental section (S1, which also include a parallel search for studies examining strategies for participant retention).

Data collection and analysis

Study selection process

Pairs of authors (LH, SHL, BJ, TL, and SSV) independently screened each abstract and reviewed full text of relevant abstracts resulting from the electronic search. We resolved disagreements by consensus or by arbitration by a third person.

Data extraction

For data on underlying research study and the relationships of the authors' affiliations and funding institutions, LH performed the initial data extraction, which was verified by SHL or BJ. For data on operational processes and quality assessment, LH, SHL and BJ performed independent data extraction. We resolved disagreements through discussion. We made up to three attempts to contact the primary authors for additional information or missing data on the costs of recruitment.

In this review, expanding on Silagy's taxonomy, we classified recruitment strategies into the following categories: medical referral, community outreach, mass media, direct contact, personal referral, incentives, registry, and other. Medical referral refers to health professionals inviting participants to the study. Community outreach involves mobilizing the community to promote the study at local fairs, church or community organized events. Mass media refers to using public service announcements and advertisements to inform potential participants about the study. Direct contact involves mailing, telephoning, or emailing potential participants. Personal
referral includes word of mouth referral by friends and family to the study. Incentives include cash or prizes for the participants’ time in the study. The registry category refers to the use of clinical databases to identify potential participants for the study. Examples of approaches classified as ‘other’ include recruitment at the worksite or using multiple recruitment approaches.

Assessment of the risk of bias of included studies

We examined the method of randomization, allocation concealment, reporting of blinding to the operational processes, analysis by intention to treat, comparability of clinical recruitment site, methods for dealing with missing data, and definition of the operational process and outcome of the recruitment efforts.

Analysis

We conducted a cost-effectiveness analysis and calculated incremental cost-effectiveness ratios (ICERs) for each study. Equation 1 is the formula for computing the ICER.

Equation 1: \[\text{ICER} = \frac{\text{Cost of Strategy B} - \text{Cost of Strategy A}}{\text{Recruitment ratio of Strategy B} - \text{Recruitment ratio of Strategy A}} \]

The ICER is the effect of changing the recruitment strategy and the additional cost incurred compared to the less costly and less effective approach. The incremental cost is the difference between the total cost per eligible participant for strategy B and the total cost per eligible participant for strategy A. Strategy A was defined as the least costly and least effective strategy reported in the study. Strategy B was the comparator.

In our analyses, the least costly and least effective strategy was usually the group that received no additional operational process. We used the total cost per eligible
participant to normalize our incremental cost, specifically for studies that had a randomization ratio other than 1:1.

We used the number of participants recruited (screened) over the number randomized (eligible) or contacted as a measure of effectiveness of the strategies. The effectiveness was determined by the recruitment ratio. The incremental recruitment ratio is the difference between the recruitment ratio for strategy B and the recruitment ratio for strategy A. We conducted an expansion path analysis, based on the ICER, to identify the most cost-effective strategies. We used the cost-effectiveness threshold as a metric to assist investigators to choose among different strategies for recruitment of participants. The cost-effectiveness threshold value, which is undefined for operational process research, would be the value that investigators are willing to pay to recruit an additional participant into the study.

We first presented cost in the unit in which it was reported. We then adjusted for inflation to 2009 national currency using the consumer price index for each country. For studies that did not report the cost year, we assumed that the cost year is two years prior to the publication date on the assumption that it takes on average two years after study completion to publish in a peer-reviewed journal21. We converted the national currency to the international dollar (Int$) using the purchasing power parity (PPP) index22. The Int$ is a theoretical unit, which allows us to compare across countries the cost of conducting the study, and to report the cost for all studies using a common unit. The PPP index is the number of units of a country’s currency needed to purchase the same amount of goods or services in the domestic market as the US dollar would buy in the United States22.
Data management

We used Endnote version X.0.2 to store the bibliographic citations from the search and QUO Information Manager to retrieve the full text articles. We abstracted and entered data to a Microsoft Access® 2007 database developed specifically for this study. We used Stata® version 10.1 to analyze the data and to obtain key statistics and Microsoft Excel® 2007 for the cost-effectiveness analysis.

Results

Search

We identified 4,819 unique citations and excluded 4,381 after screening the titles and abstracts. We retrieved and screened the full-text reports for 448 titles and abstracts; the full-text reports were not available for the remaining 9 titles and abstracts. We excluded 434 full text reports for the following reasons: commentary/reviews (n=62), no operational comparator (n=252), no cost comparator (n=73), and no randomization of operational processes reported (n=47). In total, we included 10 studies in this review (23-32) (see Figure 1). Only two of the 10 studies (24, 28) were conducted to evaluate recruitment methods to a clinical trial of interventions.

Overall description

The primary diseases studied in the included reports were prostate cancer, smoking cessation, breast cancer, ocular disorder, and abnormal pregnancy. Five (50%) studies enrolled both male and female participants; one (10%) study enrolled only male participants, and three (30%) studies recruited only female participants. Nine (90%) studies only enrolled adults and one study (10%) recruited children. Three (30%)
studies received funding from academic institution. Two (20%) studies received funding from government agencies. Two (20%) studies received funding from pharmaceutical companies. One (10%) study received both academic and government agency funding. A majority of the studies were conducted in the US (60%). Other study locations were Australia (30%) and Canada (10%).

The 10 included studies reported a total of 29 strategies for recruitment. Cost data came from retrospective review of the financial budgets. Table 1 provides a summary of the characteristics of the studies that randomized recruitment strategies. The overall recruitment duration ranged between 2 to 24 months. The median number of participants randomized was 443 (interquartile range [IQR]: 331 – 900). The median number of participants who responded to the recruitment strategies was 177 (IQR: 104 – 483). The number of strategies that were compared ranged from 2 to 5.

Quality assessment of the included studies

Of the 10 studies that randomized operational processes, only three studies reported the method for randomization. The risk of bias assessment can be found in the web supplemental section (Table S2). None of the studies described allocation concealment, blinding of the investigator, or methods for handling missing data. Three (30%) studies described an intention to treat analysis and three (30%) studies discussed comparability of the clinical recruitment sites. The definitions of the operational processes and cost measures were reported explicitly in all studies.

Economic evaluation of strategies in the randomized studies

Six (60%) studies, including one conducted in the context of recruitment to a clinical trial, assessed monetary incentives to recruit participants into the study. Three
(30%) studies implemented different methods of direct contact and one (10%) study24 compared nurses with consultant urologists for recruiting participants to a clinical trial.

Table 2 presents the cost-effectiveness results.

The median ICER for the six studies assessing monetary incentives was Int$72. The median ICER for the three direct contact studies was Int$28. The study populations for the six studies, which evaluated monetary incentives, were adolescents enrolled into a smoking cessation program28, pharmacists30, enrollees of health plans31, and physicians25,32. The investigators compared incremental cash value to either no incentive or an incentive of lesser amount. Providing vouchers to pharmacists yielded the highest cost (Int$88). The incremental cost per recruitment ratio (ICER) was Int$466 for the voucher group compared to no voucher.

In the smoking cessation program trial28, the $200 prize was less cost-effective compared to the $2 incentive. An extended cost expansion analysis was conducted for the $2 incentive and the $15 incentive. The ICER was Int$13 for the $2 incentive group to enroll an additional individual into the smoking cessation study compared to the no incentive strategy and the ICER was Int$123 for the $15 incentive group to recruit an additional person into the study compared to the $2 incentive group.

One study evaluated medical referral and compared nurses and consultant urologists to recruit participants to a clinical trial24. Having consultant urologists recruit male participants with prostate cancer into the study was more costly and less effective compared to nurses.
In a study about enrolling members of a health plan \(^{31}\), the $5 incentive group had an ICER of Int$53 compared to the $2 incentive group. For the study to recruit general physicians, the $20 incentive group was dominated because it was more costly and less effective compared to the $10 incentive group.

In another study recruiting general internists and family practitioners \(^{25}\), the $10 incentive had an ICER of Int$72 compared to the $5 incentive group. For the study recruiting female cosmetologists \(^{26}\), it was less expensive and more effective to enclose $1 in the envelope compared to no incentive.

For the three studies that chose direct contact to recruit participants \(^{23, 27, 29}\), the median ICER was Int$28. These studies reached out to a general group of women \(^{29}\), nurses \(^{23}\), and the general public dwelling in Melbourne \(^{27}\). Postal mail and interviews were used to recruit participants. The doorstep interview had a response rate greater than 50% with a total cost of Int$7037 \(^{27}\). The ICER for the doorstep interview was Int$57 which is the additional cost to implement the doorstep interview compared to telephone interview per unit increase in recruitment ratio. In the study that used different postage stamps, the large stamp had an ICER of Int$0.10 \(^{23}\). For another study using mail to recruit participants, sending out two letters was less expensive and more effective compared to the one letter plus phone call at 6 weeks \(^{29}\).

We found that investing additional resources to recruit participants yielded between 5% and 23% additional participants recruited compared to no additional recruitment strategies. However, in two studies \(^{28, 32}\), the $200 prize and the $20 incentive were eliminated from consideration as a cost-effective strategy because they
had higher ICERs and were more costly and less effective compared to the $2 incentive and $10 incentive, respectively. We were unable to determine which recruitment strategies meet an acceptable cost-effectiveness threshold because an acceptable threshold value has yet to be defined. The heterogeneity in the included studies precluded us from identifying a specific threshold to which incentives are cost effective or a particularly cost effective strategy for recruitment.

Discussion

Our systematic review synthesizes the existing evidence from randomized comparisons of recruitment strategies to reduce costs while maintaining the statistical power needed for a study. Only three strategies (monetary incentives, direct contact, and medical referral) had been assessed for recruitment of participants to randomized clinical trials. Based on the ICERs calculated for each study, we found that monetary incentives, in general, cost more than the direct contact and medical referral strategies. Across all underlying study designs, monetary incentives increased the responses among the participants compared to no incentives but at an additional expense. Investigators who have a short time frame to recruit participants and adequate budget may consider using monetary incentives as a strategy. Increasing monetary incentives showed diminishing returns on the response or recruitment rate. That is, the cost-effectiveness diminished as incentives increased beyond a certain point. The trade-off that the health research study investigator faces is whether to offer a small incentive to recruit more participants or to prolong the duration for recruitment and incur the costs to maintain the recruitment sites. It should be noted that policies in some
countries and at some institutions prohibit monetary incentives apart from reimbursement for time and expenses directly associated with study participation.

Our findings on monetary incentives as a strategy to increase enrollment are supported by other studies. Giuffrida et al. investigated financial incentives to enhance patient compliance and found that financial incentives may improve patients’ compliance to medical treatment. In a systematic review by Treweek and colleagues, the authors reported that participants’ willingness to participate in the study increased with payments. In another study, lottery-style incentives did not increase complete response rates to postal questionnaires which suggests that in addition to providing financial incentive, multiple factors affect recruitment.

We were unable to directly compare monetary incentives and direct contact strategies because the studies evaluating these strategies were conducted with different objectives. The two strategies may be effective for different reasons to different people – while monetary incentives may be appealing to younger participants because of the financial reward, others may prefer direct contact strategies that provides human interaction.

The unit for comparison in this review was the monetary cost presented in standardized currency. We did not account for indirect costs such as overhead cost that may have been incurred by the investigators but not reported in the included studies. We did not include studies that presented non-monetary cost or lost opportunity cost. We did not adjust for the number of study recruitment sites in our cost calculation or measurement for effectiveness. Higher cost of recruitment could be associated with having multiple sites for recruitment. We did not account for the study duration in our
cost-effectiveness analysis. Finally, we did not explicitly distinguish between studies on recruiting participants for surveys versus other health research studies. We considered both types of studies to have the common goal of collecting data from participants.

Our findings highlight the need for conducting further research focused on comparing different strategies for recruitment of participants to clinical trials, disseminating the findings, and using them to design cost efficient trials. Currently, methodological investigations to compare different recruitment strategies are often low on the list of priorities for the researchers and the sponsors. Among the 10 included studies, only two studies24, 28 reported recruitment strategies to clinical trials. In addition, recommendations for standardized reporting of cost-effectiveness findings from RCTs on the cost of conducting clinical trials can ensure appropriate design of future trials through sharing of best practices. Furthermore, standardized reporting could minimize potential biases which may influence the credibility of the findings as observed in our risk of bias assessment. Appropriate choices of recruitment strategies during trial design could lead to cost-efficient clinical trials but comparative data from RCTs are needed to inform choices. Thus, investigators proposing to conduct clinical trials should be encouraged to include in their proposals a discussion on cost-effectiveness of the recruitment strategies they plan to adopt in the trial, enforcing which may require policy changes at the level of funding agencies.

Conclusions

Monetary incentives, direct contact and medical referral are cost-effective strategies for recruiting participants to health research studies with a variety of designs. Recommendations for standardized reporting of findings from methodological studies on
cost-effectiveness of strategies for recruitment, retention, and follow-up of trial participants and a central resource to host the findings from such studies are necessary to support investigators to design high quality, cost-efficient health research studies including clinical trials.

Acknowledgments

Drs. Huynh, Vedula, Liu, Johns, and Puhan were in the Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, at the time this work was performed. Dr. Huynh received support from the Clinical Trials Training Grant in Vision Research (EY 07127), National Eye Institute, National Institutes of Health, USA. We thank Lori Rosman and Claire Twose, informationists from the Johns Hopkins William H. Welch Medical Library for their assistance in developing the search strategy.

Conflict of Interest

No author reported any conflict of interest.
References

21. What is the CEA Registry? : Tufts Medical Center, 2011.

22. Prices and purchasing power parities. OECD.

Table 1. Characteristics of randomized studies that evaluated recruitment strategies

<table>
<thead>
<tr>
<th>Reference #</th>
<th>First author’s last name</th>
<th>Study title</th>
<th>Year/Design</th>
<th>Primary disease</th>
<th>Objective of underlying study</th>
<th>Types of recruitment strategies</th>
<th>Overall recruitment period (in months)</th>
<th>N strategies compared</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Donovan</td>
<td>Who can best recruit to randomized trials? Randomized trial comparing surgeons and nurses recruiting patients to a trial of treatments for localized prostate cancer (the ProtecT study)</td>
<td>2003/CT</td>
<td>Prostate cancer</td>
<td>Evaluate the feasibility of RCT of treatments of localized prostate cancer</td>
<td>Medical referral</td>
<td>24/2</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>Martinson</td>
<td>Effectiveness of monetary incentives for recruiting adolescents to an intervention trial to reduce smoking</td>
<td>2000/CT</td>
<td>Smoking cessation</td>
<td>Reduce the prevalence of 30-day smoking by approximately 5-6% through both preventing acquisition of smoking among smokers and encouraging cessation among smokers</td>
<td>Monetary incentives</td>
<td>2/4</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Page</td>
<td>Recruitment to mammography screening: a randomised trial and meta-analysis of invitation letters and telephone calls</td>
<td>2006/NRCT</td>
<td>Breast cancer screening</td>
<td>Investigate the effectiveness of two strategies compared with the standard practice of one invitation letter</td>
<td>Direct contacts</td>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>Ref. #</td>
<td>First author’s last name</td>
<td>Study title</td>
<td>Year</td>
<td>Underlying study design</td>
<td>Primary disease</td>
<td>Objective of underlying study</td>
<td>Types of recruitment strategies</td>
<td>Overall recruitment period (in months)</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>--</td>
<td>------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melbourne Visual Impairment Project</td>
<td></td>
<td></td>
<td></td>
<td>to increase our understanding of the prevalence and severity of major ocular diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Choi</td>
<td>Effects of Mailing Strategies on Response Rate, Response Time, and Cost in a Questionnaire Study among Nurses</td>
<td>1990</td>
<td>Survey</td>
<td>Abnormal pregnancy</td>
<td>Determine the most efficient mailing strategy for a postal questionnaire study among nurses</td>
<td>Direct contacts</td>
<td>NR</td>
</tr>
<tr>
<td>30</td>
<td>Paul</td>
<td>A monetary incentive increases postal survey response rates for pharmacists</td>
<td>2005</td>
<td>Survey</td>
<td>Smoking cessation</td>
<td>Examine response rate for completion of postal survey</td>
<td>Monetary incentives</td>
<td>NR</td>
</tr>
<tr>
<td>31</td>
<td>Shaw</td>
<td>The use of monetary incentives in a community survey: impact on response rates, data quality, and cost</td>
<td>2001</td>
<td>Survey</td>
<td>General health</td>
<td>Assess the effect of incentive size on response rates, data quality, and cost</td>
<td>Monetary incentives</td>
<td>NR</td>
</tr>
<tr>
<td>32</td>
<td>VanGeest</td>
<td>Effects of different monetary incentives on the return rate of a national mail survey of physicians</td>
<td>2001</td>
<td>Survey</td>
<td>NA</td>
<td>Seeks to further examine the effects of incentive size on response rates to a national mail survey of physicians</td>
<td>Monetary incentives</td>
<td>NR</td>
</tr>
<tr>
<td>25. 36</td>
<td>Halpern</td>
<td>Randomized Trial of $5 versus $10 Monetary Incentives, Envelope Size, and Candy to increase</td>
<td>2002</td>
<td>Survey</td>
<td>NA</td>
<td>Assess three strategies to increase</td>
<td>Monetary incentives</td>
<td>NR</td>
</tr>
<tr>
<td>Ref. #</td>
<td>First author's last name</td>
<td>Study title</td>
<td>Year</td>
<td>Underlying study design</td>
<td>Primary disease</td>
<td>Objective of underlying study</td>
<td>Types of recruitment strategies</td>
<td>Overall recruitment period (in months)</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase Physician Response Rates to Mailed Questionnaires</td>
<td></td>
<td></td>
<td></td>
<td>response rates to mailed physician surveys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>John</td>
<td>Effect of a Monetary Incentive on Response to a Mail Survey</td>
<td>1994</td>
<td>Survey</td>
<td>Pregnancy and women health</td>
<td>Assess the effect of a monetary incentive in a larger population</td>
<td>Monetary incentives</td>
<td>3</td>
</tr>
</tbody>
</table>

Abbreviation: Not reported = NR; Not applicable = NA
Table 2. Cost-effectiveness analysis for randomized studies

<table>
<thead>
<tr>
<th>Ref. #</th>
<th>Strategy</th>
<th>Year</th>
<th>Currency</th>
<th>Duration of recruitment (in months)</th>
<th>N people randomized</th>
<th>N people responded</th>
<th>Recruitment ratio</th>
<th>Int $</th>
<th>Cost per randomized1</th>
<th>Cost per responded2</th>
<th>Incremental cost per recruitment ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>No incentive</td>
<td>2008</td>
<td>USD</td>
<td>2</td>
<td>1050</td>
<td>483</td>
<td>0.46</td>
<td>533</td>
<td>5.08</td>
<td>11.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$200 prize</td>
<td>2008</td>
<td>USD</td>
<td>2</td>
<td>1050</td>
<td>589</td>
<td>0.56</td>
<td>733</td>
<td>6.99</td>
<td>12.46</td>
<td>18.94</td>
</tr>
<tr>
<td></td>
<td>$2</td>
<td>2008</td>
<td>USD</td>
<td>2</td>
<td>1050</td>
<td>650</td>
<td>0.62</td>
<td>743</td>
<td>7.09</td>
<td>11.45</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>$15</td>
<td>2008</td>
<td>USD</td>
<td>2</td>
<td>1050</td>
<td>721</td>
<td>0.69</td>
<td>161</td>
<td>15.41</td>
<td>22.45</td>
<td>123.18</td>
</tr>
<tr>
<td>30</td>
<td>No voucher</td>
<td>2003</td>
<td>USD</td>
<td>NR</td>
<td>331</td>
<td>177</td>
<td>0.53</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voucher</td>
<td>2003</td>
<td>USD</td>
<td>NR</td>
<td>334</td>
<td>220</td>
<td>0.66</td>
<td>192</td>
<td>57.69</td>
<td>87.59</td>
<td>465.49</td>
</tr>
<tr>
<td>31</td>
<td>$2</td>
<td>2003</td>
<td>USD</td>
<td>NR</td>
<td>900</td>
<td>590</td>
<td>0.66</td>
<td>570</td>
<td>6.34</td>
<td>9.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5</td>
<td>2003</td>
<td>USD</td>
<td>NR</td>
<td>900</td>
<td>649</td>
<td>0.72</td>
<td>882</td>
<td>9.81</td>
<td>13.60</td>
<td>52.89</td>
</tr>
<tr>
<td>32</td>
<td>$5</td>
<td>1999</td>
<td>USD</td>
<td>NR</td>
<td>292</td>
<td>176</td>
<td>0.60</td>
<td>380</td>
<td>13.03</td>
<td>21.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$20</td>
<td>1999</td>
<td>USD</td>
<td>NR</td>
<td>291</td>
<td>189</td>
<td>0.65</td>
<td>934</td>
<td>32.13</td>
<td>49.47</td>
<td>408.51</td>
</tr>
<tr>
<td></td>
<td>$10</td>
<td>1999</td>
<td>USD</td>
<td>NR</td>
<td>290</td>
<td>198</td>
<td>0.68</td>
<td>510</td>
<td>17.60</td>
<td>25.77</td>
<td>-436.67</td>
</tr>
<tr>
<td>36</td>
<td>$5</td>
<td>2000</td>
<td>USD</td>
<td>NR</td>
<td>700</td>
<td>354</td>
<td>0.51</td>
<td>539</td>
<td>7.71</td>
<td>15.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$10</td>
<td>2000</td>
<td>USD</td>
<td>NR</td>
<td>500</td>
<td>293</td>
<td>0.59</td>
<td>674</td>
<td>13.49</td>
<td>23.02</td>
<td>71.99</td>
</tr>
<tr>
<td>26</td>
<td>No incentive</td>
<td>1998</td>
<td>USD</td>
<td>3</td>
<td>443</td>
<td>327</td>
<td>0.74</td>
<td>191</td>
<td>4.32</td>
<td>5.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1 enclosed with 2nd mailing</td>
<td>1998</td>
<td>USD</td>
<td>3</td>
<td>4315</td>
<td>3385</td>
<td>0.78</td>
<td>149</td>
<td>3.47</td>
<td>4.43</td>
<td>-18.40</td>
</tr>
<tr>
<td></td>
<td>$1 enclosed with first mailing</td>
<td>1998</td>
<td>USD</td>
<td>3</td>
<td>2791</td>
<td>2257</td>
<td>0.81</td>
<td>124</td>
<td>4.46</td>
<td>5.51</td>
<td>40.79</td>
</tr>
</tbody>
</table>
Direct contact (N=3)

<table>
<thead>
<tr>
<th>Ref. #</th>
<th>Strategy</th>
<th>Year</th>
<th>Currency</th>
<th>Duration of recruitment (in months)</th>
<th>N people randomized</th>
<th>N people responded</th>
<th>Recruitment ratio</th>
<th>Int $</th>
<th>Cost per randomized</th>
<th>Cost per responded</th>
<th>Incremental cost per recruitment ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>No stamp</td>
<td>199</td>
<td>USD</td>
<td>NR</td>
<td>400</td>
<td>104</td>
<td>0.26</td>
<td>372</td>
<td>0.93</td>
<td>3.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business reply stamp</td>
<td>199</td>
<td>USD</td>
<td>NR</td>
<td>400</td>
<td>132</td>
<td>0.33</td>
<td>443</td>
<td>1.11</td>
<td>3.36</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td>Metered stamp</td>
<td>199</td>
<td>USD</td>
<td>NR</td>
<td>400</td>
<td>149</td>
<td>0.37</td>
<td>577</td>
<td>1.44</td>
<td>3.87</td>
<td>7.87</td>
</tr>
<tr>
<td></td>
<td>Small regular stamp</td>
<td>199</td>
<td>USD</td>
<td>NR</td>
<td>400</td>
<td>159</td>
<td>0.40</td>
<td>585</td>
<td>1.46</td>
<td>3.68</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Large stamp</td>
<td>199</td>
<td>USD</td>
<td>NR</td>
<td>400</td>
<td>173</td>
<td>0.43</td>
<td>586</td>
<td>1.47</td>
<td>3.39</td>
<td>0.10</td>
</tr>
<tr>
<td>27</td>
<td>Telephone interview</td>
<td>199</td>
<td>AUD</td>
<td>3</td>
<td>216</td>
<td>86</td>
<td>0.40</td>
<td>450</td>
<td>0</td>
<td>20.83</td>
<td>52.33</td>
</tr>
<tr>
<td></td>
<td>Doorstep interview</td>
<td>199</td>
<td>AUD</td>
<td>3</td>
<td>256</td>
<td>132</td>
<td>0.52</td>
<td>703</td>
<td>7</td>
<td>27.49</td>
<td>53.31</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>29</td>
<td>No intervention</td>
<td>200</td>
<td>AUD</td>
<td>3</td>
<td>788</td>
<td>11</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>One letter</td>
<td>200</td>
<td>AUD</td>
<td>3</td>
<td>786</td>
<td>43</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>One letter plus phone call at six weeks</td>
<td>200</td>
<td>AUD</td>
<td>3</td>
<td>785</td>
<td>61</td>
<td>0.08</td>
<td>110</td>
<td>6</td>
<td>1.41</td>
<td>18.14</td>
</tr>
<tr>
<td></td>
<td>Two letters</td>
<td>200</td>
<td>AUD</td>
<td>3</td>
<td>785</td>
<td>67</td>
<td>0.09</td>
<td>503</td>
<td>0.64</td>
<td>7.51</td>
<td>-100.51</td>
</tr>
</tbody>
</table>

Medical referral (N=1)

<table>
<thead>
<tr>
<th>Ref. #</th>
<th>Strategy</th>
<th>Year</th>
<th>Currency</th>
<th>Duration of recruitment (in months)</th>
<th>N people randomized</th>
<th>N people responded</th>
<th>Recruitment ratio</th>
<th>Int $</th>
<th>Cost per randomized</th>
<th>Cost per responded</th>
<th>Incremental cost per recruitment ratio</th>
</tr>
</thead>
</table>

25
The cost per randomized is calculated by dividing the cost (Int$) by the number of people randomized. The cost per responded is calculated by dividing the cost (Int$) by the number of people responded.

Figure 1. Flow diagram for study selection

Articles identified and screened from database search: 4,804

Studies identified from handsearching: 15

Articles excluded after title and abstract screening: 4,381

Studies retrieved for full-text evaluation: 453

Articles excluded after full-text evaluation against eligibility criteria: 443
- No full-text: 9
- Commentary/reviews: 62
- No operational comparator: 252
- No cost comparator: 73
- No randomization: 47

Studies included for systematic review: 10