UZH-Logo

Maintenance Infos

Effects of inbred/outbred crosses on progeny sex ratio in Silene latifolia (Caryophyllaceae)


Teixeira, S; Bernasconi, G (2008). Effects of inbred/outbred crosses on progeny sex ratio in Silene latifolia (Caryophyllaceae). New Phytologist, 178(2):448-456.

Abstract

Sex ratio polymorphism has been extensively studied in Silene latifolia, but it is neither known whether inbreeding (which is likely to occur under field conditions) affects it, nor which of the proposed mechanisms (Y degeneration, X-linked drive) is more important. Both mechanisms predict reduced pollen performance. In this study, females were crossed with pollen from related and unrelated males in single-donor and two-donor crosses, and the sex ratio of offspring (n = 866, 60 crosses), sons'in vitro pollen germination and sex ratios in parental families were scored. Flowers receiving only unrelated pollen produced a significant excess of sons. Sex ratios were not significantly correlated between generations. Sons'in vitro pollen germination was significantly negatively correlated with the 'sex-ratio phenotype' of maternal grandfathers, but not of fathers. This generation leap may be consistent with X-linked determinants because Y-linked determinants alone cannot explain it (grandfathers, fathers and sons share the same Y chromosome). Further work is required, but inbreeding and limited dispersal may lead to local accumulation of biasing factors, a process potentially countered by conditional shifts to produce more sons in pure outbred crosses.

Abstract

Sex ratio polymorphism has been extensively studied in Silene latifolia, but it is neither known whether inbreeding (which is likely to occur under field conditions) affects it, nor which of the proposed mechanisms (Y degeneration, X-linked drive) is more important. Both mechanisms predict reduced pollen performance. In this study, females were crossed with pollen from related and unrelated males in single-donor and two-donor crosses, and the sex ratio of offspring (n = 866, 60 crosses), sons'in vitro pollen germination and sex ratios in parental families were scored. Flowers receiving only unrelated pollen produced a significant excess of sons. Sex ratios were not significantly correlated between generations. Sons'in vitro pollen germination was significantly negatively correlated with the 'sex-ratio phenotype' of maternal grandfathers, but not of fathers. This generation leap may be consistent with X-linked determinants because Y-linked determinants alone cannot explain it (grandfathers, fathers and sons share the same Y chromosome). Further work is required, but inbreeding and limited dispersal may lead to local accumulation of biasing factors, a process potentially countered by conditional shifts to produce more sons in pure outbred crosses.

Citations

5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 25 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:dioecy, inbreeding, pollen, sex ratio, Silene alba
Language:English
Date:2008
Deposited On:25 Jan 2009 10:06
Last Modified:05 Apr 2016 12:51
Publisher:Wiley-Blackwell
ISSN:0028-646X
Publisher DOI:https://doi.org/10.1111/j.1469-8137.2007.02366.x
PubMed ID:18248584

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations