UZH-Logo

Maintenance Infos

Pollen tube growth in the self-compatible sweet cherry genotype, ‘Cristobalina’, is slowed down after self-pollination


Cachi, A M; Hedhly, A; Hormaza, J I; Wünsch, A (2014). Pollen tube growth in the self-compatible sweet cherry genotype, ‘Cristobalina’, is slowed down after self-pollination. Annals of Applied Biology, 164(1):73-84.

Abstract

Sweet cherry is a self-incompatible fruit tree species in the Rosaceae. As other species in the family, sweet cherry exhibits S-RNase-based gametophytic self-incompatibility. This mechanism is genetically determined by the S-locus that encodes the pollen and pistil determinants, SFB and S-RNase, respectively. Several self-compatible sweet cherry genotypes have been described and most of them have mutations at the S-locus leading to self-compatibility. However, ‘Cristobalina’ sweet cherry is self-compatible due to a mutation in a pollen function modifier that is not linked to the S-locus. To investigate the physiology of self-compatibility in this cultivar, S-locus segregation in crosses involving ‘Cristobalina’ pollen, and pollen tube growth in self- and cross-pollinations, were studied. In the crosses with genotypes sharing only one S-haplotype, the non-self S-haplotype was inherited more frequently than the self S-haplotype. Pollen tube growth studies revealed that the time to travel the whole length of the style was longer for self-pollen tubes than for cross-pollen tubes. Together, these results suggest that ‘Cristobalina’ pollen tube growth is slower after self-pollination than after cross-pollination. This reproductive strategy would allow self-fertilisation in the absence of compatible pollen but would promote cross-fertilisation if cross-compatible pollen is available, a possible case of cryptic self-incompatibility. This bet-hedging strategy might be advantageous for an ecotype that is native to the mountains of the Spanish Mediterranean coast, in the geographical limits of the distribution of this species. ‘Cristobalina’ blooming takes place very early in the season when mating possibilities are scarce and, consequently, self-compatibility may be the only possibility for this genotype to produce offspring.

Abstract

Sweet cherry is a self-incompatible fruit tree species in the Rosaceae. As other species in the family, sweet cherry exhibits S-RNase-based gametophytic self-incompatibility. This mechanism is genetically determined by the S-locus that encodes the pollen and pistil determinants, SFB and S-RNase, respectively. Several self-compatible sweet cherry genotypes have been described and most of them have mutations at the S-locus leading to self-compatibility. However, ‘Cristobalina’ sweet cherry is self-compatible due to a mutation in a pollen function modifier that is not linked to the S-locus. To investigate the physiology of self-compatibility in this cultivar, S-locus segregation in crosses involving ‘Cristobalina’ pollen, and pollen tube growth in self- and cross-pollinations, were studied. In the crosses with genotypes sharing only one S-haplotype, the non-self S-haplotype was inherited more frequently than the self S-haplotype. Pollen tube growth studies revealed that the time to travel the whole length of the style was longer for self-pollen tubes than for cross-pollen tubes. Together, these results suggest that ‘Cristobalina’ pollen tube growth is slower after self-pollination than after cross-pollination. This reproductive strategy would allow self-fertilisation in the absence of compatible pollen but would promote cross-fertilisation if cross-compatible pollen is available, a possible case of cryptic self-incompatibility. This bet-hedging strategy might be advantageous for an ecotype that is native to the mountains of the Spanish Mediterranean coast, in the geographical limits of the distribution of this species. ‘Cristobalina’ blooming takes place very early in the season when mating possibilities are scarce and, consequently, self-compatibility may be the only possibility for this genotype to produce offspring.

Citations

4 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 05 Mar 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2014
Deposited On:05 Mar 2015 11:05
Last Modified:05 Apr 2016 18:58
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0003-4746
Publisher DOI:https://doi.org/10.1111/aab.12079

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 835kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations