UZH-Logo

Maintenance Infos

The role of collagen crosslinks in ageing and diabetes - the good, the bad, and the ugly


Snedeker, Jess G; Gautieri, Alfonso (2014). The role of collagen crosslinks in ageing and diabetes - the good, the bad, and the ugly. MLTJ Muscles, Ligaments and Tendons Journal, 4(3):303-308.

Abstract

The non-enzymatic reaction of proteins with glucose (glycation) is a topic of rapidly growing importance in human health and medicine. There is increasing evidence that this reaction plays a central role in ageing and disease of connective tissues. Of particular interest are changes in type-I collagens, long-lived proteins that form the mechanical backbone of connective tissues in nearly every human organ. Despite considerable correlative evidence relating extracellular matrix (ECM) glycation to disease, little is known of how ECM modification by glucose impacts matrix mechanics and damage, cell-matrix interactions, and matrix turnover during aging. More daunting is to understand how these factors interact to cumulatively affect local repair of matrix damage, progression of tissue disease, or systemic health and longevity. This focused review will summarize what is currently known regarding collagen glycation as a potential driver of connective tissue disease. We concentrate attention on tendon as an affected connective tissue with large clinical relevance, and as a tissue that can serve as a useful model tissue for investigation into glycation as a potentially critical player in tissue fibrosis related to ageing and diabetes.

The non-enzymatic reaction of proteins with glucose (glycation) is a topic of rapidly growing importance in human health and medicine. There is increasing evidence that this reaction plays a central role in ageing and disease of connective tissues. Of particular interest are changes in type-I collagens, long-lived proteins that form the mechanical backbone of connective tissues in nearly every human organ. Despite considerable correlative evidence relating extracellular matrix (ECM) glycation to disease, little is known of how ECM modification by glucose impacts matrix mechanics and damage, cell-matrix interactions, and matrix turnover during aging. More daunting is to understand how these factors interact to cumulatively affect local repair of matrix damage, progression of tissue disease, or systemic health and longevity. This focused review will summarize what is currently known regarding collagen glycation as a potential driver of connective tissue disease. We concentrate attention on tendon as an affected connective tissue with large clinical relevance, and as a tissue that can serve as a useful model tissue for investigation into glycation as a potentially critical player in tissue fibrosis related to ageing and diabetes.

Citations

Altmetrics

Downloads

10 downloads since deposited on 18 Feb 2015
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:July 2014
Deposited On:18 Feb 2015 15:40
Last Modified:05 Apr 2016 18:58
Publisher:C I C Edizioni Internazionali
ISSN:2240-4554
Publisher DOI:https://doi.org/10.11138/mltj/2014.4.3.303
PubMed ID:25489547
Permanent URL: https://doi.org/10.5167/uzh-107314

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations