UZH-Logo

Maintenance Infos

Pelvic incidence-lumbar lordosis mismatch results in increased segmental joint loads in the unfused and fused lumbar spine


Senteler, Marco; Weisse, Bernhard; Snedeker, Jess G; Rothenfluh, Dominique A (2014). Pelvic incidence-lumbar lordosis mismatch results in increased segmental joint loads in the unfused and fused lumbar spine. European Spine Journal, 23(7):1384-1393.

Abstract

PURPOSE Symptomatic adjacent segment disease (ASD) has been reported to occur in up to 27 % of lumbar fusion patients. A previous study identified patients at risk according to the difference of pelvic incidence and lordosis. Patients with a difference between pelvic incidence and lumbar lordosis >15° have been found to have a 20 times higher risk for ASD. Therefore, it was the aim of the present study to investigate forces acting on the adjacent segment in relation to pelvic incidence-lumbar lordosis (PILL) mismatch as a measure of spino-pelvic alignment using rigid body modeling to decipher the underlying forces as potential contributors to degeneration of the adjacent segment. METHODS Sagittal configurations of 81 subjects were reconstructed in a musculoskeletal simulation environment. Lumbar spine height was normalized, and body and segmental mass properties were kept constant throughout the population to isolate the effect of sagittal alignment. A uniform forward/backward flexion movement (0°-30°-0°) was simulated for all subjects. Intervertebral joint loads at lumbar level L3-L4 and L4-L5 were determined before and after simulated fusion. RESULTS In the unfused state, an approximately linear relationship between sagittal alignment and intervertebral loads could be established (shear: 0° flexion r = 0.36, p < 0.001, 30° flexion r = 0.48, p < 0.001; compression: 0° flexion r = 0.29, p < 0.01, 30° flexion r = 0.40, p < 0.001). Additionally, shear changes during the transition from upright to 30° flexed posture were on average 32 % higher at level L3-L4 and 14 % higher at level L4-L5 in alignments that were clinically observed to be prone to ASD. Simulated fusion affected shear forces at the level L3-L4 by 15 % (L4-L5 fusion) and 23 % (L4-S1 fusion) more for alignments at risk for ASD. CONCLUSION Higher adjacent segment shear forces in alignments at risk for ASD already prior to fusion provide a mechanistic explanation for the clinically observed correlation between PILL mismatch and rate of adjacent segment degeneration.

PURPOSE Symptomatic adjacent segment disease (ASD) has been reported to occur in up to 27 % of lumbar fusion patients. A previous study identified patients at risk according to the difference of pelvic incidence and lordosis. Patients with a difference between pelvic incidence and lumbar lordosis >15° have been found to have a 20 times higher risk for ASD. Therefore, it was the aim of the present study to investigate forces acting on the adjacent segment in relation to pelvic incidence-lumbar lordosis (PILL) mismatch as a measure of spino-pelvic alignment using rigid body modeling to decipher the underlying forces as potential contributors to degeneration of the adjacent segment. METHODS Sagittal configurations of 81 subjects were reconstructed in a musculoskeletal simulation environment. Lumbar spine height was normalized, and body and segmental mass properties were kept constant throughout the population to isolate the effect of sagittal alignment. A uniform forward/backward flexion movement (0°-30°-0°) was simulated for all subjects. Intervertebral joint loads at lumbar level L3-L4 and L4-L5 were determined before and after simulated fusion. RESULTS In the unfused state, an approximately linear relationship between sagittal alignment and intervertebral loads could be established (shear: 0° flexion r = 0.36, p < 0.001, 30° flexion r = 0.48, p < 0.001; compression: 0° flexion r = 0.29, p < 0.01, 30° flexion r = 0.40, p < 0.001). Additionally, shear changes during the transition from upright to 30° flexed posture were on average 32 % higher at level L3-L4 and 14 % higher at level L4-L5 in alignments that were clinically observed to be prone to ASD. Simulated fusion affected shear forces at the level L3-L4 by 15 % (L4-L5 fusion) and 23 % (L4-S1 fusion) more for alignments at risk for ASD. CONCLUSION Higher adjacent segment shear forces in alignments at risk for ASD already prior to fusion provide a mechanistic explanation for the clinically observed correlation between PILL mismatch and rate of adjacent segment degeneration.

Citations

8 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:July 2014
Deposited On:06 Feb 2015 11:26
Last Modified:05 Apr 2016 19:00
Publisher:Springer
ISSN:0940-6719
Publisher DOI:https://doi.org/10.1007/s00586-013-3132-7
PubMed ID:24647596

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations