UZH-Logo

Maintenance Infos

A novel silk-based artificial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction - safety and efficacy in a porcine model


Li, Xiang; He, Jiankang; Bian, Weiguo; Li, Zheng; Zhang, Wenyou; Li, Dichen; Snedeker, Jess G (2014). A novel silk-based artificial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction - safety and efficacy in a porcine model. Acta Biomaterialia, 10(8):3696-3704.

Abstract

Loss of ligament graft tension in early postoperative stages following anterior cruciate ligament (ACL) reconstruction can come from a variety of factors, with slow graft integration to bone being widely viewed as a chief culprit. Toward an off-the-shelf ACL graft that can rapidly integrate to host tissue, we have developed a silk-based ACL graft combined with a tricalcium phosphate (TCP)/polyether ether ketone anchor. In the present study we tested the safety and efficacy of this concept in a porcine model, with postoperative assessments at 3months (n=10) and 6months (n=4). Biomechanical tests were performed after euthanization, with ultimate tensile strengths at 3months of ∼370N and at 6months of ∼566N - comparable to autograft and allograft performance in this animal model. Comprehensive histological observations revealed that TCP substantially enhanced silk graft to bone attachment. Interdigitation of soft and hard tissues was observed, with regenerated fibrocartilage characterizing a transitional zone from silk graft to bone that was similar to native ligament bone attachments. We conclude that both initial stability and robust long-term biological attachment were consistently achieved using the tested construct, supporting a large potential for silk-TCP combinations in the repair of the torn ACL.

Loss of ligament graft tension in early postoperative stages following anterior cruciate ligament (ACL) reconstruction can come from a variety of factors, with slow graft integration to bone being widely viewed as a chief culprit. Toward an off-the-shelf ACL graft that can rapidly integrate to host tissue, we have developed a silk-based ACL graft combined with a tricalcium phosphate (TCP)/polyether ether ketone anchor. In the present study we tested the safety and efficacy of this concept in a porcine model, with postoperative assessments at 3months (n=10) and 6months (n=4). Biomechanical tests were performed after euthanization, with ultimate tensile strengths at 3months of ∼370N and at 6months of ∼566N - comparable to autograft and allograft performance in this animal model. Comprehensive histological observations revealed that TCP substantially enhanced silk graft to bone attachment. Interdigitation of soft and hard tissues was observed, with regenerated fibrocartilage characterizing a transitional zone from silk graft to bone that was similar to native ligament bone attachments. We conclude that both initial stability and robust long-term biological attachment were consistently achieved using the tested construct, supporting a large potential for silk-TCP combinations in the repair of the torn ACL.

Citations

5 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:August 2014
Deposited On:12 Feb 2015 14:50
Last Modified:05 Apr 2016 19:00
Publisher:Elsevier
ISSN:1742-7061
Publisher DOI:https://doi.org/10.1016/j.actbio.2014.05.015
PubMed ID:24874651

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations