UZH-Logo

Maintenance Infos

Sequential activity in asymmetrically coupled winner-take-all circuits


Mostafa, Hesham; Indiveri, Giacomo (2014). Sequential activity in asymmetrically coupled winner-take-all circuits. Neural Computation, 26(9):1973-2004.

Abstract

Understanding the sequence generation and learning mechanisms used by recurrent neural networks in the nervous system is an important problem that has been studied extensively. However, most of the models proposed in the literature are either not compatible with neuroanatomy and neurophysiology experimental findings, or are not robust to noise and rely on fine tuning of the parameters. In this work, we propose a novel model of sequence learning and generation that is based on the interactions among multiple asymmetrically coupled winner-take-all (WTA) circuits. The network architecture is consistent with mammalian cortical connectivity data and uses realistic neuronal and synaptic dynamics that give rise to noise-robust patterns of sequential activity. The novel aspect of the network we propose lies in its ability to produce robust patterns of sequential activity that can be halted, resumed, and readily modulated by external input, and in its ability to make use of realistic plastic synapses to learn and reproduce the arbitrary input-imposed sequential patterns. Sequential activity takes the form of a single activity bump that stably propagates through multiple WTA circuits along one of a number of possible paths. Because the network can be configured to either generate spontaneous sequences or wait for external inputs to trigger a transition in the sequence, it provides the basis for creating state-dependent perception-action loops. We first analyze a rate-based approximation of the proposed spiking network to highlight the relevant features of the network dynamics and then show numerical simulation results with spiking neurons, realistic conductance-based synapses, and spike-timing dependent plasticity (STDP) rules to validate the rate-based model.

Understanding the sequence generation and learning mechanisms used by recurrent neural networks in the nervous system is an important problem that has been studied extensively. However, most of the models proposed in the literature are either not compatible with neuroanatomy and neurophysiology experimental findings, or are not robust to noise and rely on fine tuning of the parameters. In this work, we propose a novel model of sequence learning and generation that is based on the interactions among multiple asymmetrically coupled winner-take-all (WTA) circuits. The network architecture is consistent with mammalian cortical connectivity data and uses realistic neuronal and synaptic dynamics that give rise to noise-robust patterns of sequential activity. The novel aspect of the network we propose lies in its ability to produce robust patterns of sequential activity that can be halted, resumed, and readily modulated by external input, and in its ability to make use of realistic plastic synapses to learn and reproduce the arbitrary input-imposed sequential patterns. Sequential activity takes the form of a single activity bump that stably propagates through multiple WTA circuits along one of a number of possible paths. Because the network can be configured to either generate spontaneous sequences or wait for external inputs to trigger a transition in the sequence, it provides the basis for creating state-dependent perception-action loops. We first analyze a rate-based approximation of the proposed spiking network to highlight the relevant features of the network dynamics and then show numerical simulation results with spiking neurons, realistic conductance-based synapses, and spike-timing dependent plasticity (STDP) rules to validate the rate-based model.

Altmetrics

Downloads

8 downloads since deposited on 25 Feb 2015
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2014
Deposited On:25 Feb 2015 10:25
Last Modified:05 Apr 2016 19:00
Publisher:MIT Press
ISSN:0899-7667
Additional Information:Sequential Activity in Asymmetrically Coupled Winner-Take-All Circuits, Hesham Mostafa and Giacomo Indiveri, Neural Computation 2014 26:9, 1973-2004 © 2014 Massachusetts Institute of Technology
Publisher DOI:https://doi.org/10.1162/NECO_a_00619
PubMed ID:24877737
Permanent URL: https://doi.org/10.5167/uzh-107833

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations