UZH-Logo

Maintenance Infos

Wang’s B machines are efficiently universal, as is Hasenjaeger’s small universal electromechanical toy


Neary, Turlough; Woods, Damien; Murphy, Niall; Glaschick, Rainer (2014). Wang’s B machines are efficiently universal, as is Hasenjaeger’s small universal electromechanical toy. Journal of Complexity, 30(5):634-646.

Abstract

In the 1960s Gisbert Hasenjaeger built Turing Machines from electromechanical relays and uniselectors. Recently, Glaschick reverse engineered the program of one of these machines and found that it is a universal Turing machine. In fact, its program uses only four states and two symbols, making it a very small universal Turing machine. (The machine has three tapes and a number of other features that are important to keep in mind when comparing it to other small universal machines.) Hasenjaeger’s machine simulates Hao Wang’s B machines, which were proved universal by Wang. Unfortunately, Wang’s original simulation algorithm suffers from an exponential slowdown when simulating Turing machines. Hence, via this simulation, Hasenjaeger’s machine also has an exponential slowdown when simulating Turing machines. In this work, we give a new efficient simulation algorithm for Wang’s B machines by showing that they simulate Turing machines with only a polynomial slowdown. As a second result, we find that Hasenjaeger’s machine also efficiently simulates Turing machines in polynomial time. Thus, Hasenjaeger’s machine is both small and fast. In another application of our result, we show that Hooper’s small universal Turing machine simulates Turing machines in polynomial time, an exponential improvement.

In the 1960s Gisbert Hasenjaeger built Turing Machines from electromechanical relays and uniselectors. Recently, Glaschick reverse engineered the program of one of these machines and found that it is a universal Turing machine. In fact, its program uses only four states and two symbols, making it a very small universal Turing machine. (The machine has three tapes and a number of other features that are important to keep in mind when comparing it to other small universal machines.) Hasenjaeger’s machine simulates Hao Wang’s B machines, which were proved universal by Wang. Unfortunately, Wang’s original simulation algorithm suffers from an exponential slowdown when simulating Turing machines. Hence, via this simulation, Hasenjaeger’s machine also has an exponential slowdown when simulating Turing machines. In this work, we give a new efficient simulation algorithm for Wang’s B machines by showing that they simulate Turing machines with only a polynomial slowdown. As a second result, we find that Hasenjaeger’s machine also efficiently simulates Turing machines in polynomial time. Thus, Hasenjaeger’s machine is both small and fast. In another application of our result, we show that Hooper’s small universal Turing machine simulates Turing machines in polynomial time, an exponential improvement.

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2014
Deposited On:25 Feb 2015 10:08
Last Modified:05 Apr 2016 19:00
Publisher:Elsevier
ISSN:0885-064X
Publisher DOI:https://doi.org/10.1016/j.jco.2014.02.003

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations