Propofol (Diprivan®) and Intralipid® Exacerbate Insulin Resistance in Type-2 Diabetic Hearts by Impairing GLUT4 Trafficking

Lou, Phing-How; Lucchinetti, Eliana; Zhang, Liyan; Afolter, Andreas; Gandhi, Manoj; Zhakupova, Assem; Hersberger, Martin; Hornemann, Thorsten; Clanachan, Alexander S; Zaugg, Michael

Abstract: BACKGROUND The IV anesthetic, propofol, when administered as fat emulsion-based formulation (Diprivan) promotes insulin resistance, but the direct effects of propofol and its solvent, Intralipid, on cardiac insulin resistance are unknown. METHODS Hearts of healthy and type-2 diabetic rats (generated by fructose feeding) were aerobically perfused for 60 minutes with 10 M propofol in the formulation of Diprivan or an equivalent concentration of its solvent Intralipid (25 M) ± insulin (100 mU • L). Glucose uptake, glycolysis, and glycogen metabolism were measured using [H]glucose. Activation of Akt, GSK3, AMPK, ERK1/2, p38MAPK, S6K1, JNK, protein kinase C (PKC), and protein kinase CC II (PKC II) was determined using immunoblotting. GLUT4 trafficking and phosphorylations of insulin receptor substrate-1 (IRS-1) at Ser307(h312), Ser1100(h1101), and Tyr608(hTyr612) were measured. Mass spectrometry was used to determine acylcarnitines, phospholipids, and sphingolipids. RESULTS Diprivan and Intralipid reduced insulin-induced glucose uptake and redirected glucose to glycogen stores in diabetic hearts. Reduced glucose uptake was accompanied by lower GLUT4 trafficking to the sarcolemma. Diprivan and Intralipid inactivated GSK3 but activated AMPK and ERK1/2 in diabetic hearts. Only Diprivan increased phosphorylation of Akt(Ser473/Thr308) and translocated PKC and PKC II to the sarcolemma in healthy hearts, whereas it activated S6K1 and p38MAPK and translocated PKC II in diabetic hearts. Furthermore, only Diprivan phosphorylated IRS-1 at Ser1100(h1101) in healthy and diabetic hearts. JNK expression, phosphorylation of Ser307(h312) of IRS-1, and PKC expression and translocation were increased, whereas GLUT4 expression was reduced in insulin-treated diabetic hearts. Phosphatidylglycerol, phosphatidylethanolamine, and C18-sphingolipids accumulated in Diprivan-perfused and Intralipid-perfused diabetic hearts. CONCLUSIONS Propofol and Intralipid promote insulin resistance predominantly in type-2 diabetic hearts.

DOI: https://doi.org/10.1213/ANE.0000000000000558

Published Version

Originally published at:
Lou, Phing-How; Lucchinetti, Eliana; Zhang, Liyan; Afolter, Andreas; Gandhi, Manoj; Zhakupova, Assem; Hersberger, Martin; Hornemann, Thorsten; Clanachan, Alexander S; Zaugg, Michael (2015). Propofol (Diprivan®) and Intralipid® Exacerbate Insulin Resistance in Type-2 Diabetic Hearts by Impairing GLUT4 Trafficking. Anesthesia and Analgesia, 120(2):329-340. DOI: https://doi.org/10.1213/ANE.0000000000000558
Propofol (Diprivan®) and Intralipid® Exacerbate Insulin Resistance in Type-2 Diabetic Hearts by Impairing GLUT4 Trafficking

Phing-How Lou, PhD,§ Eliana Lucchinetti, PhD,† Liyan Zhang, PhD,† Andreas Affolter, BSc;‡ Manoj Gandhi, PhD,§ Assem Zhakupova, MS,║ Martin Hersberger, PhD;‡ Thorsten Hornemann, PhD,|| Alexander S. Clanachan, PhD,§ and Michael Zaugg, MD, MBA, FRCPC†

BACKGROUND: The IV anesthetic, propofol, when administered as fat emulsion-based formulation (Diprivan®) promotes insulin resistance, but the direct effects of propofol and its solvent, Intralipid®, on cardiac insulin resistance are unknown.

METHODS: Hearts of healthy and type-2 diabetic rats (generated by fructose feeding) were aerobi-cally perfused for 60 minutes with 10 μM propofol in the formulation of Diprivan or an equivalent concentration of its solvent Intralipid (25 μM ± insulin (100 mU·L⁻¹)). Glucose uptake, glycolysis, and glycogen metabolism were measured using [³H]glucose. Activation of Akt, GSK3β, AMPK, ERK1/2, p38MAPK, S6K1, JNK, protein kinase Cθ (PKCθ), and protein kinase Cε (PKCe) was determined using immunoblotting, GLUT4 trafficking and phosphorylations of insulin receptor substrate-1 (IRS-1) at Ser307(h312), Ser1100(h1101), and Tyr608(hTyr612) were measured. Mass spectrometry was used to determine acylcarnitines, phospholipids, and sphingolipids.

RESULTS: Diprivan and Intralipid reduced insulin-induced glucose uptake and redirected glucose to glycogen stores in diabetic hearts. Reduced glucose uptake was accompanied by lower GLUT4 trafficking to the sarcolemma. Diprivan and Intralipid inactivated GSK3β but activated AMPK and ERK1/2 in diabetic hearts. Only Diprivan increased phosphorylation of Akt(Ser473/Thr308) and translocated PKCθ and PKCe in the sarcolemma in healthy hearts, whereas it activated S6K1 and p38MAPK and translocated PKCe in diabetic hearts. Furthermore, only Diprivan phosphorylated IRS-1 at Ser1100(h1101) in healthy and diabetic hearts. JNK expression, phosphorylation of Ser307(h312) of IRS-1, and PKCθ expression and translocation were increased, whereas GLUT4 expression was reduced in insulin-treated diabetic hearts. Phosphatidylglycerol, phosphatidylethanolamine, and C18-sphingolipids accumulated in Diprivan-perfused and Intralipid-perfused diabetic hearts.

how insulin signaling would be affected by these treatments. Specifically, we hypothesized that both propofol and Intralipid would increase insulin resistance in the already metabolically compromised diabetic heart. To address this aim, we compared the effects of the 2 commercially available drugs Diprivan and Intralipid. The use of the working rat heart model allowed us to conduct the experiments under well-controlled conditions, independent of multiple confounding factors resulting from alterations in whole body physiology. For our experiments, we used hearts from fructose-fed rats, a well-established model of type-2 diabetes with hyperglycemia, hyperinsulinemia, hypertriglyceridemia, insulin resistance, arterial hypertension, and abdominal obesity, consistent with all features of the human metabolic syndrome.10,11 Moreover, fructose-induced dietary diabetes resembles early type-2 diabetes,12 which is potentially reversible and devoid of the severe maladaptive consequences typically accompanying genetic or inbred models of diabetes mellitus.

METHODS

The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the U.S. National Institutes of Health (NIH Publication No. 85-23, revised 1996), and the experimental protocol used in this investigation was approved by the University of Alberta Animal Policy and Welfare Committee. All materials were from Sigma-Aldrich (St. Louis, MO) unless otherwise stated.

Model of Type-2 Diabetes Mellitus Using Fructose Feeding

Male Sprague-Dawley rats (8 weeks of age, from the Biosciences breeding colony, University of Alberta, Edmonton, Canada) were fed 6 weeks with standard chow (PicoLab® Laboratory Rodent diet 5LOD, LabDiet Inc., St. Louis, MO) and fructose (10% w/v) dissolved in drinking water and compared with untreated rats fed a fructose-free diet. The lipogenic sugar fructose, as opposed to glucose, feeds directly into the pool of C2-bodies in the liver causing increased hepatic triglyceride formation, followed by hyperlipidemia and insulin resistance. After only 6 weeks of fructose feeding, rats consistently exhibit the classical characteristics of type-2 diabetes including hyperglycemia, hyperinsulinemia, hypertriglycerideremia, insulin resistance, arterial hypertension, and abdominal obesity. This type-2 diabetes model has been characterized in detail.11-13

Working Heart Perfusion Protocols

Rats (14 weeks) were anesthetized with pentobarbital (150 mg·kg−1, intraperitoneally). Each heart was rapidly removed and perfused initially in a nonworking Langendorff mode with Krebs-Henseleit solution containing 3% bovine serum albumin for 10 minutes, before establishing the working mode perfusion as previously described.14 Left ventricular work (mL·min−1·mm Hg) was calculated as left ventricular work · cardiac output × (aortic systolic pressure – preload). Measurements of mechanical function were averaged for the initial 30 minutes of aerobic perfusion (no insulin) and for the following 60 minutes of perfusion in the presence of insulin. Hearts were assigned to the following 6 groups (Supplemental Digital Content 1, which is a scheme detailing the protocols, http://links.lww.com/AA/B32). Groups 1 and 2: untreated healthy or diabetic hearts perfused without insulin for 30 minutes followed by 60 minutes with insulin; groups 3 and 4: healthy or diabetic hearts perfused without insulin for 30 minutes and then treated with insulin plus 10 μM propofol (Diprivan); and groups 5 and 6 (solvent controls): healthy or diabetic hearts perfused without insulin for 30 minutes and then treated with insulin plus Intralipid (25 μM, as corresponding solvent control of Diprivan). Ten micromolar propofol (Diprivan) was chosen because this concentration reflects the effect-site concentration at which loss of consciousness occurs in humans.15 Because the heart perfusate contained 3% bovine serum albumin, some of the administered propofol was likely bound, thereby reducing the free active concentration as occurs under clinical conditions. Additional healthy and diabetic hearts were perfused for 90 minutes without insulin or for 30 minutes only in the absence of insulin (required for the measurement of glucose uptake).

Metabolic Flux Measurements of Glycolysis

The rate of glycolysis was determined by perfusing hearts with [5-3H]glucose.16 Total myocardial 3H2O production (liberated from [5-3H]glucose at the enolase step of glycolysis) was determined every 10 minutes and the rates were expressed as μmol·gdw−1·min−1.

Determination of Tissue Glycogen Content and [5-3H]glucose Incorporation

Glycogen content (μmol glucosyl units per gdw) and the incorporation of [5-3H]glucose into glycogen were also determined for each heart.14,16

Glucose Uptake in Perfused Working Hearts

Glucose uptake (in μmol·gdw−1·min−1) was calculated based on its metabolism by glycolysis and its incorporation into glycogen. The average rate of glucose uptake in the 30 to 90 minutes treatment period is the sum of the rate of glycolysis and the rate of glycogen synthesis. Glycogen synthesis in the 30 to 90 minutes treatment period is calculated from the increase in radiolabeled glycogen content (calculated as the difference between radiolabeled contents at 30 and 90 minutes).

Citrate Synthase Activity (Oxidative Capacity)

The activity of the mitochondrial matrix marker enzyme citrate synthase was measured at 412 nm by monitoring the formation of thionitrobenzoate, as previously described.17

Determination of Glycolytic Metabolites

Heart tissue (75 mg) was deproteinized with perchloric acid and supernatants were adjusted to pH 3.5 using K2CO3 (5 M). Glucose-6-phosphate, fructose-6-phosphate, and fructose-1,6-bisphosphate in heart tissue (nmol·gdw−1) were determined by a coupled enzymatic assay, as described previously.18

Immunoblotting

Total tissue homogenates were prepared from frozen heart tissue homogenized in ice-cold buffer containing 50 mM...
Tris (pH 8.0), 150 mM NaCl, and 1% Nonidet P-40, supplemented with protease and phosphatase inhibitors, as previously described. Membrane and cytosolic fractions were prepared according to the methods reported by Lizotte et al. Protein concentration was measured by Bradford assay. Densitometric analysis of immunoblots was performed using ImageJ software. The following proteins were probed with the appropriate antibodies from Cell Signaling Technology (unless otherwise stated; Cell Signaling Technology, Inc., Danvers, MA): phospho-Akt (Ser473 and Thr308), Akt, phospho-GSK3β (Ser9, GSK3β), phospho-AMPK (Thr172), AMPK, phospho-ERK1/2 (Thr202/Tyr204), Erk1/2, phospho-p38MAPK (Thr180/Tyr182), p38MAPK, phospho-JNK (Thr183/Tyr185; Millipore, Billerica, MA), JNK (Millipore), phospho-S6K1 (Thr389; Abcam, Cambridge, MA), S6K1 (Abcam), insulin receptor substrate-1 (IRS-1), phospho-IRS-1 (Ser1100/h1101, Ser307/h312), phospho-IRS-1 (Tyr608/h612; Abcam), GLUT4, protein kinase Cθ (PKCθ), and protein kinase Cβ (PKCβ) (Santa Cruz Biotechnology, Dallas, TX). Because PKCβ persisted translates to the membrane under insulin stimulation, it was measured in membrane fractions. Tubulin (Santa Cruz Biotechnology, Santa Cruz, CA) was used as loading control in blots where total tissue fractions. Tubulin (Santa Cruz Biotechnology, Santa Cruz, CA) was used as loading control in blots where total tissue fractions. Protein concentration was measured by Bradford assay. Densitometric analysis of immunoblots was performed using ImageJ software. Protein concentration was measured by Bradford assay. Densitometric analysis of immunoblots was performed using ImageJ software. The following proteins were probed with the appropriate antibodies from Cell Signaling Technology (unless otherwise stated; Cell Signaling Technology, Inc., Danvers, MA): phospho-Akt (Ser473 and Thr308), Akt, phospho-GSK3β (Ser9, GSK3β), phospho-AMPK (Thr172), AMPK, phospho-ERK1/2 (Thr202/Tyr204), Erk1/2, phospho-p38MAPK (Thr180/Tyr182), p38MAPK, phospho-JNK (Thr183/Tyr185; Millipore, Billerica, MA), JNK (Millipore), phospho-S6K1 (Thr389; Abcam, Cambridge, MA), S6K1 (Abcam), insulin receptor substrate-1 (IRS-1), phospho-IRS-1 (Ser1100/h1101, Ser307/h312), phospho-IRS-1 (Tyr608/h612; Abcam), GLUT4, protein kinase Cθ (PKCθ), and protein kinase Cβ (PKCβ) (Santa Cruz Biotechnology, Dallas, TX). Because PKCβ persistently translocates to the membrane under insulin stimulation, it was measured in membrane fractions. Tubulin (Santa Cruz Biotechnology, Santa Cruz, CA) was used as loading control in blots where total tissue extracts or cytosolic fractions were used. GLUT4, PKCθ, and PKCβ were normalized to the membrane marker Na+/K+-ATPase, which showed no difference in the expression between healthy and type-2 diabetic rat hearts (not shown). Immunoblots for the treatment groups (insulin, insulin plus Diprivan, and insulin plus Intralipid) were run within the same gel for each model (healthy or diabetic hearts). Samples of the same healthy and diabetic hearts with insulin treatment only were further run on additional gels to gauge the relative intensity levels of each protein of interest to allow direct comparisons between models.

Mass Spectrometry for Acylcarnitine Profiling of Cardiac Tissue

Tissue levels of 32 acylcarnitine species were measured using electrospray ionization tandem mass spectrometry, as described previously. Liquid chromatography-tandem mass spectrometry combining high-performance liquid chromatography separation on normal-phase column with multiple parent-ion or neutral loss scans on a triple-quadruple mass spectrometer was used to analyze the following phospholipid classes from lipid extracts of cardiac tissues. The following species were determined: sphingomyelin, phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidic acid, and ceramides. Supplemental Digital Content 2 contains detailed protocols (http://links.lww.com/AA/B33).

Statistical Analysis

Values are given as mean (SD) or median (25th, 75th percentile) depending on the underlying data distribution for the indicated number of independent observations. A sample size of 5 for changes in glucose uptake was calculated based on published data on insulin-induced cardiac glucose uptake. With an expected difference of 1.5 μmol glucose·gdw⁻¹·min⁻¹, an SD of 0.6 μmol glucose·gdw⁻¹·min⁻¹, an α level of 0.05, and a power of 0.8, a minimal sample size of 5 was calculated. Additional hearts were enrolled to account for the intrinsic reduced insulin responsiveness of the diabetic heart. The significance of differences in hemodynamic and metabolic (glycolysis rates) variables among groups was determined by 2-way repeated-measures analysis of variance (ANOVA) followed by an all pairwise multiple comparison procedure using the Holm-Sidak method for post hoc analysis. Differences were evaluated by Student t test (2 groups) or by ANOVA followed by an all pairwise multiple comparison procedure using the Holm-Sidak method for post hoc analysis. Nonparametric methods (Kruskal-Wallis ANOVA on ranks) were used in the case where the conditions for parametric ANOVA were not met (i.e., equal variance and normally distributed residuals). Normality was assessed using the Shapiro-Wilk test, whereas equal variance was assessed using the Levene test (the default P value of 0.05 to reject was used in both cases). Differences are considered significant if the overall P < 0.05. SigmaPlot (version 12.0; Systat Software, Inc., Chicago, IL) was used for the analyses.

RESULTS

After 6 weeks of fructose feeding, rats exhibited total body insulin resistance. Glucose tolerance tests showed delayed glucose clearance with markedly increased blood glucose levels compared with healthy rats (Supplemental Digital Content 3, which shows glucose tolerance and insulin sensitivity tests, http://links.lww.com/AA/B34). An intraperitoneal insulin challenge resulted in a less prominent blood glucose reduction in the fructose-fed diabetic rats compared with that in healthy rats (Supplemental Digital Content 3, http://links.lww.com/AA/B34). We have previously shown that these rats also show increased fasting glucose, triglyceride, and insulin blood levels, the classical features of type-2 diabetes mellitus. Furthermore, during working mode perfusion, the hearts of diabetic rats exhibited a reduced insulin-stimulated glucose uptake rate (1.4 ± 0.6 vs 2.4 ± 0.4 μmol·gdw⁻¹·min⁻¹; P = 0.002) (Fig. 1A), consistent with cardiac insulin resistance. Diabetic hearts also had higher levels of triglycerides, lysophosphatidylcholine, and lysophosphatidylethanolamine and lower mitochondrial content and dysfunctional β-oxidation with increased tissue concentrations of acylcarnitines compared with hearts from age-matched healthy rats (Table 1).
Diprivan and Intralipid Reduce Glucose Uptake and Redirect Glucose to Glycogen Stores in Insulin-Stimulated Type-2 Diabetic Hearts

To evaluate the effects of Diprivan and Intralipid on the insulin response, Diprivan and Intralipid were added to the perfusate 3 minutes before insulin administration. In accordance with previous reports in rat hearts, insulin administration was accompanied with mild negative inotropic effects (Table 2). Intralipid reduced glucose uptake in both healthy and diabetic hearts by 25% and 61% of insulin response on average, respectively (Fig. 1A). Likewise, Diprivan reduced glucose uptake to a greater extent in both healthy and diabetic hearts by 48% and 109% of the insulin response, respectively (Fig. 1A). The reduced glucose uptake in Diprivan-treated healthy hearts and Diprivan-treated and Intralipid-treated diabetic hearts was due to a reduction in glycolytic flux rates (Fig. 1B). In insulin-stimulated healthy hearts, the treatment with both fat emulsions decreased total glycogen content (Fig. 1C), with the most profound effect occurring in the Intralipid group (ff-INS versus ff-INS/IL post hoc; \(P = 0.043 \)). Consistent with reduced oxidative capacity in diabetic hearts, as measured by citrate synthase activity (Table 1), glucose was diverted from substrate oxidation to glycogen storage when exposed to fat emulsions. Together, these data show that Diprivan and Intralipid promote insulin resistance, predominantly in diabetic hearts.

Diprivan and Intralipid Impair GLUT4 Trafficking in Insulin-Stimulated Type-2 Diabetic Hearts and Propofol Specifically Increases Phosphorylation of IRS-1 at Ser1100

GLUT4 protein content was reduced in insulin-stimulated diabetic hearts (Panel A in Supplemental Digital Content 4, which shows differences in protein expression and phosphorylation of insulin-stimulated healthy and diabetic hearts, http://links.lww.com/AA/B35), but membrane translocation was largely maintained (data not shown). When comparing the effect of Diprivan and Intralipid on GLUT4 trafficking to the sarcolemma in the healthy hearts, there was a clear propofol-specific impairment (Fig. 2A). GLUT4 translocation to the membrane was also reduced in the Intralipid group (ff-INS versus ff-INS/IL post hoc; \(P = 0.043 \)). Consistent with reduced oxidative capacity in diabetic hearts, as measured by citrate synthase activity (Table 1), glucose was diverted from substrate oxidation to glycogen storage when exposed to fat emulsions. Together, these data show that Diprivan and Intralipid promote insulin resistance, predominantly in diabetic hearts.
Phosphorylation of IRS-1 phosphorylation at Ser1100 (h1101), there was also an overall increase in diabetic hearts independent of any treatment (Fig. 2C). Phosphorylation of IRS-1 at Ser473 or Thr308. GSK3β and AMPK activation were similarly enhanced by both Diprivan and Intralipid treatment in insulin-stimulated healthy hearts, we observed that propofol impairs GLUT4 trafficking only in type-2 diabetic hearts.

Table 1. Characteristics of Healthy and Diabetic Hearts

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>ff</th>
<th>P</th>
<th>Mean difference (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrate synthase activity (μmol mL⁻¹ min⁻¹ µg⁻¹)</td>
<td>20.2 (2.1)</td>
<td>16.9 (3.1)</td>
<td><0.001</td>
<td>3.3 (2.2–4.5)</td>
</tr>
<tr>
<td>Cardiac tissue triglycerides (μmol gdw⁻¹)</td>
<td>6.35 (2.01)</td>
<td>7.74 (2.29)</td>
<td>0.016</td>
<td>−1.39 (−2.52 to −0.27)</td>
</tr>
<tr>
<td>Cardiac tissue levels of phospholipids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysocephatidylcholine (nmol mg⁻¹)</td>
<td>151 (18)</td>
<td>198 (19)</td>
<td>0.019</td>
<td>−48 (−83 to −12)</td>
</tr>
<tr>
<td>Lysocephatidylethanolamine (nmol mg⁻¹)</td>
<td>129 (27)</td>
<td>197 (27)</td>
<td>0.012</td>
<td>−68 (−115 to −21)</td>
</tr>
<tr>
<td>Phosphatidylethanolamine (nmol mg⁻¹)</td>
<td>50 (8)</td>
<td>66 (14)</td>
<td>0.119</td>
<td>−16 (−36 to 6)</td>
</tr>
<tr>
<td>Sphingomyelin (nmol mg⁻¹)</td>
<td>34.7 (6.8)</td>
<td>33.1 (8.5)</td>
<td>0.780</td>
<td>1.6 (−11.7 to 14.9)</td>
</tr>
<tr>
<td>Cardiac tissue levels of sphingolipids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16-sphingosine (pmol per 100 μg)</td>
<td>0.56 (0.14)</td>
<td>0.53 (0.08)</td>
<td>0.737</td>
<td>0.03 (−0.17 to 0.22)</td>
</tr>
<tr>
<td>C18-sphingosine (pmol per 100 μg)</td>
<td>154 (21)</td>
<td>152 (29)</td>
<td>0.971</td>
<td>2 (−42 to 48)</td>
</tr>
<tr>
<td>C18-sphinganine (pmol per 100 μg)</td>
<td>1.7 (0.3)</td>
<td>1.4 (0.2)</td>
<td>0.075</td>
<td>0.3 (−0.05 to 0.77)</td>
</tr>
<tr>
<td>C18-sphingadiene (pmol per 100 μg)</td>
<td>41 (11)</td>
<td>40 (9)</td>
<td>0.924</td>
<td>1 (−17 to 18)</td>
</tr>
<tr>
<td>C20-sphingosine (pmol per 100 μg)</td>
<td>0.35 (0.10)</td>
<td>0.50 (0.08)</td>
<td>0.057</td>
<td>−0.15 (−0.31 to 0.006)</td>
</tr>
</tbody>
</table>

Table 2. Cardiac Function in Perfused Healthy and Diabetic Hearts

<table>
<thead>
<tr>
<th></th>
<th>h-noINS</th>
<th>h-INS</th>
<th>h-INS/DIPR</th>
<th>h-INS/L</th>
<th>ff-noINS</th>
<th>ff-INS</th>
<th>ff-INS/DIPR</th>
<th>ff-INS/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (min⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equilibration</td>
<td>241 (24)</td>
<td>262 (19)</td>
<td>256 (23)</td>
<td>252 (12)</td>
<td>229 (11)</td>
<td>228 (10)</td>
<td>230 (15)</td>
<td>224 (16)</td>
</tr>
<tr>
<td>RM-ANOVA P (group);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (time); P (interaction)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO (mL min⁻¹)</td>
<td>66 (7)</td>
<td>66 (9)</td>
<td>66 (8)</td>
<td>65 (6)</td>
<td>69 (7)</td>
<td>65 (4)</td>
<td>67 (9)</td>
<td>66 (11)</td>
</tr>
<tr>
<td>RM-ANOVA P (group);</td>
<td>0.86; <0.001; 0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (time); P (interaction)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVW (mm Hg • L min⁻¹)</td>
<td>7.95 (2.1)</td>
<td>7.97 (1.06)</td>
<td>7.92 (0.79)</td>
<td>8.19 (1.30)</td>
<td>8.19 (1.34)</td>
<td>8.36 (1.42)</td>
<td>8.58 (1.65)</td>
<td>7.80 (1.46)</td>
</tr>
<tr>
<td>RM-ANOVA P (group);</td>
<td>0.83; <0.001; 0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (time); P (interaction)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as mean (SD). Two-way RM-ANOVA was performed to compare the following 4 groups of hearts from healthy (h) and from fructose-fed (ff) rats, namely noINS, INS, INS/DIPR, and INS/L. P was followed by multiple comparison procedures (Holm-Sidak method).

Overall, propofol impairs GLUT4 trafficking and specifically increases serine phosphorylation of IRS-1. Intralipid impairs GLUT4 trafficking only in type-2 diabetic hearts.
Propofol and Intralipid Cause Cardiac Insulin Resistance

Diprivan and Intralipid treatment in diabetic hearts (Fig. 3, C and D). Diprivan and Intralipid treatment further activated ERK1/2 exclusively in diabetic hearts (Fig. 4A). Only Diprivan activated p38MAPK and S6K1 in diabetic hearts (Fig. 4, B and C). Expression of JNK was increased in diabetic hearts (Panel C in Supplemental Digital Content 3, http://links.lww.com/AA/B34), but there was no difference in phosphorylation in response to Diprivan or Intralipid treatment (Fig. 4D). Membrane and total tissue expression of the novel PKCζ was increased in diabetic hearts (Panel D in Supplemental Digital Content 3, http://links.lww.com/AA/B34). Only Diprivan significantly increased PKCζ translocation to the membrane in healthy hearts (Fig. 5A). The conventional PKCβII was activated only in Diprivan-treated healthy and diabetic hearts (Fig. 5B). PKC activation by Diprivan only clearly indicates a propofol-specific effect. There was no increase in total expression of Akt, GSK3β, AMPK, ERK1/2, p38MAPK, S6K1, and PKCβII in diabetic hearts compared with healthy hearts (data not shown).

Diprivan and Intralipid Promote Accumulation of Potentially Diabetogenic Fatty Acid Intermediates in Insulin-Stimulated Type-2 Diabetic Hearts

To determine whether diabetic hearts exposed to Diprivan or Intralipid showed changes in concentrations of potentially toxic lipid species, we examined the concentrations of phospholipids and sphingolipids in cardiac tissue extracts using mass spectrometry. These measurements showed accumulation of the phospholipids phosphatidylglycerol and phosphatidylethanolamine in Diprivan-treated and Intralipid-treated diabetic hearts (Table 3). Unexpectedly, only Diprivan but not Intralipid reduced ceramide levels in diabetic hearts. In healthy hearts, both Diprivan and Intralipid reduced phosphatidylethanolamine, the most abundant sphingoid base C18-sphingosine, and its saturated counterpart C18-sphinganine (Table 3). Diprivan was more effective than Intralipid in increasing C18-sphingosines and sphingadienes in diabetic hearts.

DISCUSSION

Fatty acids and fat emulsions impair glucose metabolism via the Randle cycle and hence are used in experimental settings to generate insulin resistance. In otherwise healthy volunteers, infusion of long-chain triglycerides reduces insulin sensitivity. Nonetheless, fat emulsions are widely used in surgical patients either as a solvent for the IV anesthetic, propofol, or in vulnerable intensive care unit patients for sedation or parenteral nutrition. However, not much is known as to how fat emulsions or propofol itself affects glucose metabolism in the heart. In our experiments, we used type-2 diabetic hearts to establish the impact of propofol (Diprivan) and its solvent, Intralipid, on insulin-induced glucose uptake. Consistent with previous reports, we show that the early diabetic heart already exhibits accumulation of triglycerides, dysfunctional β-oxidation, and reduced oxidative capacity. Our discovery that Intralipid and propofol in the formulation of Diprivan worsen lipid overload...
and further impair glucose metabolism in these hearts is novel but in line with current knowledge on lipotoxicity and associated inflammation in the diabetic heart. \(^1,31–33\)

Our study shows the following salient findings. First, insulin-stimulated glucose uptake was reduced in Diprivan-treated healthy hearts, and the reduction in glucose uptake under Intralipid treatment almost reached statistical significance \((P = 0.078)\). However, only Diprivan abolished the action of insulin on glycolytic flux. This was accompanied by impaired GLUT4 trafficking to the sarcolemma. Conversely, healthy hearts responded to insulin in the presence of Intralipid and increased glycolytic flux, implying that Intralipid alone only marginally affects insulin sensitivity. \(^28\)

Possibly, the release of intracellular glucose stores from glycogen due to unsaturated fatty acid–induced activation of glycogen phosphorylase \(^34\) caused the reduction in glucose uptake without changing GLUT4 trafficking. Glycerol, another constituent of Intralipid, may have further contributed to pyruvate formation and thus reduced glucose uptake. \(^35\) Together, these results indicate that propofol itself acutely promotes insulin resistance in healthy hearts. This conclusion is also supported by our observation that Diprivan, but not Intralipid, caused marked activation and membrane translocation of PKC\(\theta\) and PKC\(\beta II\) as well as the phosphorylation at Ser1100(h1101) of the IRS protein IRS-1, a key player in insulin signaling. \(^36,37\)

More recently, insulin resistance and feedback inhibition of insulin signaling were found to be mediated by serine/threonine phosphorylation of IRS-1 and most of them negatively modulate insulin effects, whereas multiple (so far at least 8) tyrosine phosphorylation sites of IRS-1 have opposite effects. \(^37\) Ser1100(h1101) of IRS-1 is a target of PKC\(\theta\), \(^38\) the importance of which in insulin signaling is further supported by studies showing the lack of insulin resistance to dietary challenge in PKC\(\theta\)-knockout mice. \(^39,40\)

Overexpression of PKC\(\beta II\) in mouse skeletal muscle induces insulin resistance. \(^41\) Both PKC isoforms further inhibit insulin receptor tyrosine kinase by serine phosphorylation. \(^42\) Interestingly, healthy hearts exposed to Diprivan showed increased Akt phosphorylation at Ser473 and Thr308, consistent with full Akt activation. It appears that Akt signaling in Diprivan-treated healthy hearts is dysfunctional. However, it inhibits phosphatases, \(^43\) and it has been reported that sustained phosphorylation of Akt mediates insulin-induced feedback inhibition \(^44\) and thus contributes to cardiac insulin resistance. \(^45\)

Second, both Diprivan and Intralipid abolished the action of insulin on glycolytic flux in early diabetic hearts and impaired GLUT4 trafficking to the sarcolemma. In addition, Diprivan decreased phosphofructokinase-1 activity in these hearts. The reduced insulin sensitivity in diabetic hearts exposed to Diprivan and Intralipid was closely linked to increased phosphorylation of AMPK and stress kinases (ERK1/2 and p38MAPK). Insulin inhibits cardiac AMPK, and hearts perfused in the absence of insulin have been reported to show higher AMPK phosphorylation than hearts perfused in the presence of insulin. \(^46\) In fact, phosphorylation of AMPK at Ser485 or Ser491 is responsible for the

Figure 3. Activation pattern of metabolic kinases in insulin-stimulated healthy and diabetic hearts. A, Akt phosphorylation at Ser473. B, Akt phosphorylation at Thr308. C, GSK3b phosphorylation at Ser9. D, AMPK phosphorylation at Thr172. INS = insulin alone; INS/DIPR = perfusion with insulin and treated with Diprivan (10 \(\mu\)M); INS/IL = perfusion with insulin and treated with Intralipid (25 \(\mu\)M); \(h =\) healthy; \(ff =\) fructose-fed; ANOVA = analysis of variance. \(N = 4–5\) for each group. *Versus INS. \#Versus INS/IL.
Propofol and Intralipid Cause Cardiac Insulin Resistance

Effect of high insulin concentrations to blunt AMPK activation (Thr172 site) in the heart. Our data are thus consistent with the concept that activation of AMPK ensures adequate cardiac energy production when glucose utilization is compromised. AMPK also inhibits insulin signalling by phosphorylating IRS-1 at Ser789 (h794). Diprivan-mediated and Intralipid-mediated insulin resistance and AMPK activation may have also lead to the observed accumulation of glycogen in diabetic hearts. Consistent with this interpretation, glycogen synthase kinase-3β phosphorylation was increased in Diprivan-treated and Intralipid-treated diabetic hearts leading to the activation of glycogen synthase. Finally, increased ERK1/2 and p38MAPK activities also inhibit IRS-1 by phosphorylation at Ser612 (ERK1/2) and Ser636 (p38MAPK), respectively. In diabetic hearts, only Diprivan treatment activated PKCβII and the pro-inflammatory S6K1, which also promotes Ser1100 (h1101) phosphorylation of IRS-1, again implying distinct diabetogenic effects of propofol itself.

Third, our study shows for the first time that administration of Diprivan and Intralipid leads to accumulation of potentially diabetogenic lipids in the heart. A recent study found that prediabetes and type-2 diabetes are associated with increased plasma levels of phosphatidylethanolamine, phosphatidylglycerol, and ceramides. Lysophosphatidylcholine, another phospholipid, is reportedly an efficient effector of fatty acid–induced insulin resistance. Lysophosphatidylcholine activates JNK, which phosphorylates IRS-1 at Ser307 (h312). Moreover, the increased levels of phosphatidylethanolamine detected in...
Table 3. Phospholipids and Sphingolipids in Perfused Healthy and Diabetic Hearts

<table>
<thead>
<tr>
<th></th>
<th>h-INS</th>
<th>h-INS/DIPR</th>
<th>h-INS/IL</th>
<th>ff-INS</th>
<th>ff-INS/DIPR</th>
<th>ff-INS/IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phospholipids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphatidylethanolamine (nmol·mg⁻¹)</td>
<td>60 (11)</td>
<td>45 (6)</td>
<td>46 (8)</td>
<td>48 (11)</td>
<td>71 (14)</td>
<td>65 (13)</td>
</tr>
<tr>
<td>P</td>
<td>0.015</td>
<td></td>
<td></td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysophosphatidylcholine (nmol·mg⁻¹)</td>
<td>68 (32)</td>
<td>84 (34)</td>
<td>67 (25)</td>
<td>108 (43)</td>
<td>143 (49)</td>
<td>120 (29)</td>
</tr>
<tr>
<td>P</td>
<td>0.524</td>
<td></td>
<td></td>
<td>0.308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysophosphatidylethanolamine (nmol·mg⁻¹)</td>
<td>89 (68)</td>
<td>53 (31)</td>
<td>47 (21)</td>
<td>62 (29)</td>
<td>75 (30)</td>
<td>102 (41)</td>
</tr>
<tr>
<td>P</td>
<td>0.213</td>
<td></td>
<td></td>
<td>0.106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphatidylglycerol (nmol·mg⁻¹)</td>
<td>4.0 (1.1)</td>
<td>4.0 (2.1)</td>
<td>3.1 (2.4)</td>
<td>3.1 (0.6)</td>
<td>4.5 (1.0)</td>
<td>4.5 (1.4)</td>
</tr>
<tr>
<td>P</td>
<td>0.674</td>
<td></td>
<td></td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphingomyelin (nmol·mg⁻¹)</td>
<td>38 (8)</td>
<td>29 (5)</td>
<td>31 (11)</td>
<td>25 (5)</td>
<td>29 (6)</td>
<td>28 (5)</td>
</tr>
<tr>
<td>P</td>
<td>0.140</td>
<td></td>
<td></td>
<td>0.262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramides (nmol·mg⁻¹)</td>
<td>1.4 (0.4; 2.7)</td>
<td>2.2 (0.7; 4.5)</td>
<td>NA</td>
<td>4.1 (2.2)</td>
<td>1.3 (1.3)</td>
<td>4.4 (1.9)</td>
</tr>
<tr>
<td>P</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sphingoid bases

C16SO (pmol per 100 μg)	0.7 (0.1)	0.8 (0.1)	0.7 (0.1)	0.6 (0.1)	0.6 (0.1)	0.5 (0.1)
P	0.209			0.05		
C17SO (pmol per 100 μg)	2.3 (0.2)	2.0 (0.2)	2.0 (0.3)	1.4 (0.2)	1.6 (0.3)	1.6 (0.4)
P	0.072			0.544		
C18SO (pmol per 100 μg)	162 (13)	123 (12)	134 (17)	109 (10)	148 (17)	132 (14)
P	<0.001			<0.001		
C18SA-diene (pmol per 100 μg)	41 (5)	38 (5)	36 (4)	29 (5)	47 (10)	38 (7)
P	0.137			0.001		
C18SA (pmol per 100 μg)	2.4 (0.4)	1.5 (0.2)	1.9 (0.2)	1.4 (0.2)	1.6 (0.3)	1.4 (0.2)
P	<0.001			0.338		
C20SO (pmol per 100 μg)	0.3 (0.06)	0.5 (0.1)	0.3 (0.06)	0.4 (0.1)	0.3 (0.05)	0.3 (0.1)
P	<0.001					

Data are presented as mean (SD) or median (25th, 75th percentile). Analysis of variance was performed to compare INS, INS/DIPR, and INS/IL from healthy (h) and from fructose-fed (ff) rats. It was followed by a multiple comparison procedure (Holm-Sidak method). C16-sphinganine and the saturated and unsaturated deoxy-sphingoid bases were not detectable. N = 7 in all groups. Differences are considered significant (boldface) if the overall P < 0.05.

INS = insulin-only group; INS/DIPR = insulin plus Diprivan (10 μM); INS/IL = insulin plus Intralipid (25 μM); C16SO = C16-sphingosine (d16:1); C17SO = C17-sphingosine (d17:1); C18SO = C18-sphingosine (d18:1); C20SO = C20-sphingosine (d20:1); C18SA = C18-sphinganine (d18:0); C18SA-diene = sphingadiene (d18:2); NA = not available.

*Significantly different from INS.

**Significantly different from INS and INS/IL.

Figure 6. Working model of lipotoxicity by Diprivan and Intralipid in the heart. The diabetic heart is overloaded by fatty acid species and exhibits dysfunctional β-oxidation. Provision of supplementary fat or propofol to the diabetic myocardium raises levels of toxic lipids, which activate kinases mediating insulin resistance by hyperphosphorylation of the insulin receptor substrate-1 (IRS-1) at multiple serine/threonine residues. The hyperphosphorylated state of the IRS-1 reduces the activity of the insulin receptor (IR) tyrosine kinase and of phosphoinositide 3-kinase (PI3K). Reduced tyrosine kinase activity of the IR inhibits GLUT4 translocation via the Casitas b-lineage lymphoma (c-Cbl)-TC10 (a small GTPase) pathway (PI3K-independent), while reduced PI3K activity also reduces GLUT4 translocation. In contrast to conventional and novel PKC, atypical PKC promote GLUT4 trafficking. In healthy hearts, propofol persistently increases Akt activity possibly by inhibiting PP2A phosphatase activity,43 which also provides feedback inhibition to the IRS-1 and reduces GLUT4 trafficking.
our study in the diabetic myocardium exposed to Diprivan and Intralipid may exert strong proinflammatory effects when oxidized or glycated.56 Recent studies also linked increased plasma sphingolipid levels to impaired insulin signaling.22

Taken together, our data suggest that propofol and Intralipid activate key kinases involved in serine/threonine phosphorylation of IRS-1 and thereby reduce insulin signaling (Fig. 6). Increased serine phosphorylation of IRS-1 reduces GLUT4 trafficking even downstream via reduced phosphoinositide 3-kinase activation55,57,58 or upstream via inhibition of insulin receptor tyrosine kinase activity,59 which initiates small GTPase (TC10)–mediated phosphoinositide 3-kinase–independent GLUT4 exocytosis.57

Because insulin resistance is tightly associated with increased morbidity and mortality,54,55 it is possible that further impairment of insulin signaling by Diprivan or Intralipid treatment in at-risk patients with diabetes may worsen clinical outcomes. A meta-analysis in surgical and critically ill patients reported higher complication rates in subgroups of patients treated with lipid-based parenteral nutrition compared with patients receiving lipid-free formulations.60 Hence, future studies in at-risk patients are necessary to address the relevance of our experimental observations in the clinical setting.

In conclusion, our experiments show that Diprivan and Intralipid reduce glucose uptake predominantly in diabetic hearts. The loss of metabolic flexibility is triggered by alterations in insulin signaling and GLUT4 trafficking and accompanied by accumulation of potentially diabetogenic lipids.

\section*{ACKNOWLEDGMENTS}
T. Hornemann and A. Zhakupova are grateful to the Center of Integrated Human Physiology (ZIHP) and the “radiz”–Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich.

\section*{DISCLOSURES}
Name: Phing-How Lou, PhD.
\textbf{Contribution}: This author conducted most of the experiments, was involved in data analysis, and in writing the manuscript.
\textbf{Attestation}: Phing-How Lou has seen the original study data and approved the final manuscript.

Name: Eliana Lucchinetti, PhD.
\textbf{Contribution}: This author was involved in the design of the study, analyzed the data, and wrote the manuscript.
\textbf{Attestation}: Eliana Lucchinetti has seen and attests to the integrity of the original data and the analysis reported in this manuscript and is the archival author. Eliana Lucchinetti approved the final manuscript.

Name: Liyan Zhang, PhD.
\textbf{Contribution}: This author conducted some of the experiments.
\textbf{Attestation}: Liyan Zhang approved the final manuscript.

Name: Andreas Affolter, BSc.
\textbf{Contribution}: This author conducted some of the experiments.
\textbf{Attestation}: Andreas Affolter approved the final manuscript.

Name: Manoj Gandhi, PhD.
\textbf{Contribution}: This author conducted some of the experiments and was responsible for animal care.
\textbf{Attestation}: Manoj Gandhi approved the final manuscript.

\textbf{Name}: Assem Zhakupova, MS.

21. Wang L, Ko KW, coworkers. AMPK control of myocardial fatty acid metabolism: CD36 and pyruvate dehydrogenase as key regulators of myocardial fatty acid oxidation: CD36 and pyruvate dehydrogenase as key regulators of fatty acid and glucose oxidation: CD36 and pyruvate dehydrogenase as key regulators of fatty acid oxidation. Biochimie 2005;87:99–105

