It is shown that a quantum gravity formulation exists on the basis of quantum number conservation, the laws of thermodynamics, unspecific interactions, and locally maximizing the ratio of resulting degrees of freedom per imposed degree of freedom of the theory. The First Law of thermodynamics is evaluated by imposing boundary conditions to the theory. These boundary conditions determine the details of the complex world structure. No explicite microscopic quantum structure is required, and thus no ambiguity arises on how to construct the model. Although no dynamical computations of quantum systems are possible on this basis, all well established physics may be recovered, and all measurable quantities may be computed. The recovery of physical laws is shown by extremizing the entropy, which means varying the action on the bulk and boundary of small volumes of curved space-time. It is sketched how Quantum Field Theory (QFT) and General Relativity (GR) are recovered with no further assumptions except for imposing the dimension of a second derivative of the metric on the gravitational field equations. The new concepts are 1. the abstract organization of statistical quantum states, allowing for the possibility of absent quantum microstructure, 2. the optimization of the locally resulting degrees of freedom per imposed degree of freedom of the theory, allowing for the reconstruction of the spacetime dimensions, 3. the reconstruction of physical and geometric quantities by means of stringent mathematical or physical justifications, 4. the fully general recovery of GR by quasi-local variation methods applied on small portions of spacetime.

Mandrin, P A (2014). *Existence of a consistent quantum gravity model from minimum microscopic information.* International Journal of Theoretical Physics, 53(12):4250-4266.

## Abstract

It is shown that a quantum gravity formulation exists on the basis of quantum number conservation, the laws of thermodynamics, unspecific interactions, and locally maximizing the ratio of resulting degrees of freedom per imposed degree of freedom of the theory. The First Law of thermodynamics is evaluated by imposing boundary conditions to the theory. These boundary conditions determine the details of the complex world structure. No explicite microscopic quantum structure is required, and thus no ambiguity arises on how to construct the model. Although no dynamical computations of quantum systems are possible on this basis, all well established physics may be recovered, and all measurable quantities may be computed. The recovery of physical laws is shown by extremizing the entropy, which means varying the action on the bulk and boundary of small volumes of curved space-time. It is sketched how Quantum Field Theory (QFT) and General Relativity (GR) are recovered with no further assumptions except for imposing the dimension of a second derivative of the metric on the gravitational field equations. The new concepts are 1. the abstract organization of statistical quantum states, allowing for the possibility of absent quantum microstructure, 2. the optimization of the locally resulting degrees of freedom per imposed degree of freedom of the theory, allowing for the reconstruction of the spacetime dimensions, 3. the reconstruction of physical and geometric quantities by means of stringent mathematical or physical justifications, 4. the fully general recovery of GR by quasi-local variation methods applied on small portions of spacetime.

## Citations

## Altmetrics

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Physics Institute |

Dewey Decimal Classification: | 530 Physics |

Language: | English |

Date: | 2014 |

Deposited On: | 24 Feb 2015 13:09 |

Last Modified: | 05 Apr 2016 19:03 |

Publisher: | Springer New York LLC |

ISSN: | 0020-7748 |

Publisher DOI: | https://doi.org/10.1007/s10773-014-2176-8 |

## Download

Full text not available from this repository.View at publisher

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.