UZH-Logo

Maintenance Infos

Microbiome of peri-implant infections: lessons from conventional, molecular and metagenomic analyses


Charalampakis, Georgios; Belibasakis, Georgios N (2015). Microbiome of peri-implant infections: lessons from conventional, molecular and metagenomic analyses. Virulence, 6(3):183-187.

Abstract

Osseointegrated dental implants are now a well-established treatment option in the armament of restorative dentistry. These technologically advanced devices are designed to functionally and esthetically replace missing teeth. Despite the revolutionary advances that implants have incurred, they have also provided the oral cavity with new artificial surfaces prone to the formation of oral biofilms, similarly to the hard tissue surfaces of natural teeth. Biofilm formation on the implant surface can trigger the inflammatory destruction of the peri-implant tissue, in what is known as peri-implantitis. The mixed microbial flora of peri-implant infections resembles that of periodontal infections, with some notable differences. These are likely to expand with the ever increasing application of metagenomics and metatrascriptomics in the analysis of oral ecology. This review presents the wealth of knowledge we have gained from microbiological methods used in the characterization of peri-implant microflora and sheds light over potential new benefits, as well as limitations, of the new sequencing technology in our understanding of peri-implant disease pathogenesis.

Abstract

Osseointegrated dental implants are now a well-established treatment option in the armament of restorative dentistry. These technologically advanced devices are designed to functionally and esthetically replace missing teeth. Despite the revolutionary advances that implants have incurred, they have also provided the oral cavity with new artificial surfaces prone to the formation of oral biofilms, similarly to the hard tissue surfaces of natural teeth. Biofilm formation on the implant surface can trigger the inflammatory destruction of the peri-implant tissue, in what is known as peri-implantitis. The mixed microbial flora of peri-implant infections resembles that of periodontal infections, with some notable differences. These are likely to expand with the ever increasing application of metagenomics and metatrascriptomics in the analysis of oral ecology. This review presents the wealth of knowledge we have gained from microbiological methods used in the characterization of peri-implant microflora and sheds light over potential new benefits, as well as limitations, of the new sequencing technology in our understanding of peri-implant disease pathogenesis.

Citations

8 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

59 downloads since deposited on 05 Mar 2015
32 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Institute of Oral Biology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:5 February 2015
Deposited On:05 Mar 2015 14:25
Last Modified:21 May 2016 12:09
Publisher:Landes Bioscience
ISSN:2150-5594
Publisher DOI:https://doi.org/10.4161/21505594.2014.980661
PubMed ID:25654499

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 166kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations