Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-10888

Massacand, J C; Kaiser, P; Ernst, B; Tardivel, A; Bürki, K; Schneider, P; Harris, N L (2008). Intestinal bacteria condition dendritic cells to promote IgA production. PLoS ONE, 3(7):e2588.

Accepted Version
View at publisher


Immunoglobulin (Ig) A represents the predominant antibody isotype produced at the intestinal mucosa, where it plays an important role in limiting the penetration of commensal intestinal bacteria and opportunistic pathogens. We show in mice that Peyer's Patch-derived dendritic cells (PP-DC) exhibit a specialized phenotype allowing the promotion of IgA production by B2 cells. This phenotype included increased expression of the retinaldehyde dehydrogenase 1 (RALDH1), inducible nitric oxide synthase (iNOS), B cell activating factor of the tumor necrosis family (BAFF), a proliferation-inducing ligand (APRIL), and receptors for the neuropeptide vasoactive intestinal peptide (VIP). The ability of PP-DC to promote anti-CD40 dependent IgA was partially dependent on retinoic acid (RA) and transforming growth factor (TGF)-beta, whilst BAFF and APRIL signaling were not required. Signals delivered by BAFF and APRIL were crucial for CD40 independent IgA production, although the contribution of B2 cells to this pathway was minimal. The unique ability of PP-DC to instruct naïve B cells to differentiate into IgA producing plasma cells was mainly imparted by the presence of intestinal commensal bacteria, and could be mimicked by the addition of LPS to the culture. These data indicate that exposure to pathogen-associated molecular patterns present on intestinal commensal bacteria condition DC to express a unique molecular footprint that in turn allows them to promote IgA production.


47 citations in Web of Science®
67 citations in Scopus®
Google Scholar™



40 downloads since deposited on 21 Jan 2009
2 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Laboratory Animal Science
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Deposited On:21 Jan 2009 12:25
Last Modified:05 Apr 2016 12:51
Publisher:Public Library of Science (PLoS)
Publisher DOI:10.1371/journal.pone.0002588
PubMed ID:18596964

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page