UZH-Logo

Maintenance Infos

The contactin-related protein FAR-2 defines purkinje cell clusters and labels subpopulations of climbing fibers in the developing cerebellum.


Plagge, A; Sendtner-Voelderndorff, L; Sirim, P; Freigang, J; Rader, C; Sonderegger, P; Brümmendorf, T (2001). The contactin-related protein FAR-2 defines purkinje cell clusters and labels subpopulations of climbing fibers in the developing cerebellum. Molecular and Cellular Neuroscience, 18(1):91-107.

Abstract

FAR-2 is a novel neural member of the Ig superfamily, which is related to F11/F3/contactin and axonin-1/TAG-1. This protein is expressed by subpopulations of Purkinje cells in the chicken cerebellum and FAR-2-positive clusters of these neurons alternate with FAR-2-negative clusters in both tangential dimensions of the cerebellar cortex. Furthermore, FAR-2 is also expressed by one type of Purkinje cell afferents, namely, the climbing fibers, and different subpopulations of these axons show distinct levels of FAR-2 expression. Homology modeling using axonin-1 as a template reveals that the four aminoterminal Ig domains of FAR-2 form a compact U-shaped structure, which is likely to contain functionally important ligand-binding sites. FAR-2 is binding to the Ig superfamily protein NgCAM/L1, but not to the related receptor NrCAM, and it is also interacting with the modular ECM protein tenascin-R. These results suggest that FAR-2 may contribute to the formation of somatotopic maps of cerebellar afferents during the development of the nervous system.

FAR-2 is a novel neural member of the Ig superfamily, which is related to F11/F3/contactin and axonin-1/TAG-1. This protein is expressed by subpopulations of Purkinje cells in the chicken cerebellum and FAR-2-positive clusters of these neurons alternate with FAR-2-negative clusters in both tangential dimensions of the cerebellar cortex. Furthermore, FAR-2 is also expressed by one type of Purkinje cell afferents, namely, the climbing fibers, and different subpopulations of these axons show distinct levels of FAR-2 expression. Homology modeling using axonin-1 as a template reveals that the four aminoterminal Ig domains of FAR-2 form a compact U-shaped structure, which is likely to contain functionally important ligand-binding sites. FAR-2 is binding to the Ig superfamily protein NgCAM/L1, but not to the related receptor NrCAM, and it is also interacting with the modular ECM protein tenascin-R. These results suggest that FAR-2 may contribute to the formation of somatotopic maps of cerebellar afferents during the development of the nervous system.

Citations

19 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 July 2001
Deposited On:11 Feb 2008 12:20
Last Modified:05 Apr 2016 12:17
Publisher:Elsevier
ISSN:1044-7431
Funders:Deutsche Forschungsgemeinschaft Grant Br1217/3-1(2)
Publisher DOI:10.1006/mcne.2001.1006
PubMed ID:11461156

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations