Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-10986

Selak, N; Bachrati, C Z; Shevelev, I; Dietschy, T; van Loon, B; Jacob, A; Hübscher, U; Hoheisel, J D; Hickson, I D; Stagljar, I (2008). The Bloom's syndrome helicase (BLM) interacts physically and functionally with p12, the smallest subunit of human DNA polymerase delta. Nucleic Acids Research, 36(16):5166-5179.

View at publisher


Bloom's syndrome (BS) is a cancer predisposition disorder caused by mutation of the BLM gene, encoding a member of the RecQ helicase family. Although the phenotype of BS cells is suggestive of a role for BLM in repair of stalled or damaged replication forks, thus far there has been no direct evidence that BLM associates with any of the three human replicative DNA polymerases. Here, we show that BLM interacts specifically in vitro and in vivo with p12, the smallest subunit of human POL {delta} (hPOL {delta}). The hPOL {delta} enzyme, as well as the isolated p12 subunit, stimulates the DNA helicase activity of BLM. Conversely, BLM stimulates hPOL {delta} strand displacement activity. Our results provide the first functional link between BLM and the replicative machinery in human cells, and suggest that BLM might be recruited to sites of disrupted replication through an interaction with hPOL {delta}. Finally, our data also define a novel role for the poorly characterized p12 subunit of hPOL {delta}.


10 citations in Web of Science®
14 citations in Scopus®
Google Scholar™



36 downloads since deposited on 21 Jan 2009
8 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Biochemistry and Molecular Biology
Dewey Decimal Classification:570 Life sciences; biology
Deposited On:21 Jan 2009 14:00
Last Modified:05 Apr 2016 12:52
Publisher:Oxford University Press
Additional Information:Full final text Oxford Journal
Publisher DOI:10.1093/nar/gkn498
PubMed ID:18682526

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page