UZH-Logo

Maintenance Infos

Comparison of vegetation phenological metrics extracted from GIMMS NDVIg and MERIS MTCI data sets over China


He, Yaqian; Bo, Yanchen; de Jong, Rogier; Li, Aihua; Zhu, Yuxin; Cheng, Jiehai (2015). Comparison of vegetation phenological metrics extracted from GIMMS NDVIg and MERIS MTCI data sets over China. International Journal of Remote Sensing, 36(1):300-317.

Abstract

Evaluating vegetation phenology is crucial for a better understanding of the effects of climate change on the terrestrial ecosystem. The scientific community has used various vegetation index data sets from different sensors to quantify vegetation phenology from regional to global scales. The normalized difference vegetation index (NDVI) related to photosynthetic activities is the most widely used index. Recently, a number of published articles have used the Medium Resolution Imaging Spectrometer (MERIS) terrestrial chlorophyll index (MTCI) to measure vegetation phenology. MTCI can closely represent the red-edge position (REP). Unlike NDVI, MTCI is more sensitive to high values of chlorophyll content. However, the consistency of vegetation phenological metrics derived from MTCI and NDVI needs to be further explored. This study compared two phenological metrics, i.e. onset of greenness (OG) and end of senescence (ES), extracted from MERIS MTCI data and Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) first generation NDVI (NDVIg) data, which has the longest time records, at nine regions in China from 2003 to 2006. The results showed that the differences of OG and ES vary between different vegetation types, regions, and years, although both NDVI and MTCI time series capture the growth patterns well for most vegetation types. Compared to ES, the OG estimates are more consistent. NDVI yields in general later ES estimates than MTCI.

Evaluating vegetation phenology is crucial for a better understanding of the effects of climate change on the terrestrial ecosystem. The scientific community has used various vegetation index data sets from different sensors to quantify vegetation phenology from regional to global scales. The normalized difference vegetation index (NDVI) related to photosynthetic activities is the most widely used index. Recently, a number of published articles have used the Medium Resolution Imaging Spectrometer (MERIS) terrestrial chlorophyll index (MTCI) to measure vegetation phenology. MTCI can closely represent the red-edge position (REP). Unlike NDVI, MTCI is more sensitive to high values of chlorophyll content. However, the consistency of vegetation phenological metrics derived from MTCI and NDVI needs to be further explored. This study compared two phenological metrics, i.e. onset of greenness (OG) and end of senescence (ES), extracted from MERIS MTCI data and Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) first generation NDVI (NDVIg) data, which has the longest time records, at nine regions in China from 2003 to 2006. The results showed that the differences of OG and ES vary between different vegetation types, regions, and years, although both NDVI and MTCI time series capture the growth patterns well for most vegetation types. Compared to ES, the OG estimates are more consistent. NDVI yields in general later ES estimates than MTCI.

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 27 Mar 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2015
Deposited On:27 Mar 2015 12:49
Last Modified:05 Apr 2016 19:11
Publisher:Taylor & Francis
ISSN:0143-1161
Publisher DOI:https://doi.org/10.1080/01431161.2014.994719
Permanent URL: https://doi.org/10.5167/uzh-109984

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 699kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations