UZH-Logo

Maintenance Infos

The orexigenic effect of peripheral ghrelin differs between rats of different age and with different baseline food intake, and it may in part be mediated by the area postrema


Gilg, S; Lutz, T A (2006). The orexigenic effect of peripheral ghrelin differs between rats of different age and with different baseline food intake, and it may in part be mediated by the area postrema. Physiology and Behavior, 87(2):353-359.

Abstract

Ghrelin is mainly secreted during fasting. While an orexigenic effect of peripherally injected ghrelin has been reported, reproducing this effect has often proven difficult. Here, we hypothesized that ghrelin's effect to increase food intake may depend on the experimental conditions (e.g., age of animals). We therefore investigated the effect of an IP ghrelin injection (100 microg/kg) on food intake in rats of different age and at different times during the light-dark cycle, i.e. with different levels of baseline food intake. Ghrelin injected at dark onset in ad libitum fed young rats (body weight [BW] 92 g) slightly increased feeding while no such effect was observed in 12 h food deprived rats (BW 150 g). In the middle of the light phase, ghrelin significantly increased feeding up to 2 h after injection in ad libitum fed rats (BW 130 g; food intake 1 h after injection: NaCl 0.4 +/- 0.2 g versus ghrelin 1.2 +/- 0.3 g [p < 0.05]). In various subsequent experiments, older rats (BW 300-490 g) tested under the same conditions did not respond to a single ghrelin injection. However repeated ghrelin injection (15 microg/kg/day once daily at light onset) over 10 days significantly increased food intake in rats (BW 400-460 g) starting from day 4 of the experiment (24 h food intake: NaCl approx. 19.5 g, ghrelin 22.5 g). Interestingly, the latter effect was completely abolished in rats lesioned in the area postrema (AP). Cumulative food intake was also increased in SHAM but not in AP-X animals (e.g., after 7 days: SHAM/NaCl 135.1 +/- 5.3 g versus SHAM/ghrelin 149.7 +/- 3.5 g [p < 0.05], AP-X/NaCl 127.2 +/- 16.4 versus AP-X/ghrelin 127.9 +/- 5.3). We conclude that ghrelin's effect to increase food intake can best be demonstrated when basal food intake is low. Ghrelin increases feeding mainly in young, fast growing animals. Ghrelin may therefore link the high energy needs to body growth in young individuals. In older animals, peripheral ghrelin increased feeding when injected repeatedly over several days. At least under these conditions, ghrelin's effect was mediated by the AP/NTS region. Using repeated administration, ghrelin might be an interesting tool to increase feeding in patients suffering from wasting diseases such as cancer anorexia.

Ghrelin is mainly secreted during fasting. While an orexigenic effect of peripherally injected ghrelin has been reported, reproducing this effect has often proven difficult. Here, we hypothesized that ghrelin's effect to increase food intake may depend on the experimental conditions (e.g., age of animals). We therefore investigated the effect of an IP ghrelin injection (100 microg/kg) on food intake in rats of different age and at different times during the light-dark cycle, i.e. with different levels of baseline food intake. Ghrelin injected at dark onset in ad libitum fed young rats (body weight [BW] 92 g) slightly increased feeding while no such effect was observed in 12 h food deprived rats (BW 150 g). In the middle of the light phase, ghrelin significantly increased feeding up to 2 h after injection in ad libitum fed rats (BW 130 g; food intake 1 h after injection: NaCl 0.4 +/- 0.2 g versus ghrelin 1.2 +/- 0.3 g [p < 0.05]). In various subsequent experiments, older rats (BW 300-490 g) tested under the same conditions did not respond to a single ghrelin injection. However repeated ghrelin injection (15 microg/kg/day once daily at light onset) over 10 days significantly increased food intake in rats (BW 400-460 g) starting from day 4 of the experiment (24 h food intake: NaCl approx. 19.5 g, ghrelin 22.5 g). Interestingly, the latter effect was completely abolished in rats lesioned in the area postrema (AP). Cumulative food intake was also increased in SHAM but not in AP-X animals (e.g., after 7 days: SHAM/NaCl 135.1 +/- 5.3 g versus SHAM/ghrelin 149.7 +/- 3.5 g [p < 0.05], AP-X/NaCl 127.2 +/- 16.4 versus AP-X/ghrelin 127.9 +/- 5.3). We conclude that ghrelin's effect to increase food intake can best be demonstrated when basal food intake is low. Ghrelin increases feeding mainly in young, fast growing animals. Ghrelin may therefore link the high energy needs to body growth in young individuals. In older animals, peripheral ghrelin increased feeding when injected repeatedly over several days. At least under these conditions, ghrelin's effect was mediated by the AP/NTS region. Using repeated administration, ghrelin might be an interesting tool to increase feeding in patients suffering from wasting diseases such as cancer anorexia.

Altmetrics

Downloads

0 downloads since deposited on 15 Apr 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:28 February 2006
Deposited On:15 Apr 2015 13:20
Last Modified:05 Apr 2016 19:13
Publisher:Elsevier
ISSN:0031-9384
Publisher DOI:https://doi.org/10.1016/j.physbeh.2005.10.015
PubMed ID:16356516
Permanent URL: https://doi.org/10.5167/uzh-110335

Download

[img]
Filetype: PDF - Registered users only
Size: 132kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations