UZH-Logo

Maintenance Infos

Renal cell carcinoma marker reliably discriminates central nervous system haemangioblastoma from brain metastases of renal cell carcinoma


Ingold, B; Wild, P J; Nocito, A; Amin, M B; Storz, M; Heppner, F L; Moch, H (2008). Renal cell carcinoma marker reliably discriminates central nervous system haemangioblastoma from brain metastases of renal cell carcinoma. Histopathology, 52(6):674-681.

Abstract

AIMS: The distinction between central nervous system (CNS) metastases of clear cell renal cell carcinoma (RCC) and CNS haemangioblastoma still poses a challenge to the pathologist. Since both entities occur in von Hippel-Lindau disease, this aggravates the issue. The antibody renal cell carcinoma marker (RCC-ma) has been suggested to identify primary RCCs specifically, but its value for diagnosing metastases of RCC is controversial. The aim was to assess two distinct clones of the RCC-ma for their potential to: (i) identify primary RCCs and (ii) differentiate between CNS metastases of clear cell RCC and CNS haemangioblastomas. METHODS AND RESULTS: Using tissue microarrays, 77% (n = 363; PN-15) and 66% (n = 355; 66.4C2) of clear cell RCCs, and 93% (PN-15) and 74% (66.4C2) of papillary RCCs (n = 46) were immunopositive for RCC-ma, whereas none of the investigated chromophobe RCCs (n = 22) or any of the oncocytomas (n = 15) showed immunoreactivity. Importantly, 50.9% of CNS metastases of clear cell RCCs (n = 55) exhibited RCC-ma expression, whereas all CNS haemangioblastomas (71) were negative. CONCLUSIONS: Both RCC-ma clones, despite some variation in their sensitivity to detect clear cell and papillary RCCs, are of value in differentiating subtypes of primary RCC and are excellent markers for discriminating clear cell lesions in the brain.

Abstract

AIMS: The distinction between central nervous system (CNS) metastases of clear cell renal cell carcinoma (RCC) and CNS haemangioblastoma still poses a challenge to the pathologist. Since both entities occur in von Hippel-Lindau disease, this aggravates the issue. The antibody renal cell carcinoma marker (RCC-ma) has been suggested to identify primary RCCs specifically, but its value for diagnosing metastases of RCC is controversial. The aim was to assess two distinct clones of the RCC-ma for their potential to: (i) identify primary RCCs and (ii) differentiate between CNS metastases of clear cell RCC and CNS haemangioblastomas. METHODS AND RESULTS: Using tissue microarrays, 77% (n = 363; PN-15) and 66% (n = 355; 66.4C2) of clear cell RCCs, and 93% (PN-15) and 74% (66.4C2) of papillary RCCs (n = 46) were immunopositive for RCC-ma, whereas none of the investigated chromophobe RCCs (n = 22) or any of the oncocytomas (n = 15) showed immunoreactivity. Importantly, 50.9% of CNS metastases of clear cell RCCs (n = 55) exhibited RCC-ma expression, whereas all CNS haemangioblastomas (71) were negative. CONCLUSIONS: Both RCC-ma clones, despite some variation in their sensitivity to detect clear cell and papillary RCCs, are of value in differentiating subtypes of primary RCC and are excellent markers for discriminating clear cell lesions in the brain.

Citations

17 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 22 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
04 Faculty of Medicine > University Hospital Zurich > Institute of Surgical Pathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2008
Deposited On:22 Jan 2009 11:47
Last Modified:05 Apr 2016 12:52
Publisher:Wiley-Blackwell
ISSN:0309-0167
Publisher DOI:https://doi.org/10.1111/j.1365-2559.2008.03003.x
PubMed ID:18393979

Download

[img]
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations