UZH-Logo

Maintenance Infos

Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull


Delso, Gaspar; Wiesinger, Florian; Sacolick, Laura I; Kaushik, Sandeep S; Shanbhag, Dattesh D; Hüllner, Martin; Veit-Haibach, Patrick (2015). Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull. Journal of Nuclear Medicine, 56(3):417-422.

Abstract

MR-based attenuation correction is instrumental for integrated PET/MR imaging. It is generally achieved by segmenting MR images into a set of tissue classes with known attenuation properties (e.g., air, lung, bone, fat, soft tissue). Bone identification with MR imaging is, however, quite challenging, because of the low proton density and fast decay time of bone tissue. The clinical evaluation of a novel, recently published method for zero-echo-time (ZTE)-based MR bone depiction and segmentation in the head is presented here.
METHODS: A new paradigm for MR imaging bone segmentation, based on proton density-weighted ZTE imaging, was disclosed earlier in 2014. In this study, we reviewed the bone maps obtained with this method on 15 clinical datasets acquired with a PET/CT/MR trimodality setup. The CT scans acquired for PET attenuation-correction purposes were used as reference for the evaluation. Quantitative measurements based on the Jaccard distance between ZTE and CT bone masks and qualitative scoring of anatomic accuracy by an experienced radiologist and nuclear medicine physician were performed.
RESULTS: The average Jaccard distance between ZTE and CT bone masks evaluated over the entire head was 52% ± 6% (range, 38%-63%). When only the cranium was considered, the distance was 39% ± 4% (range, 32%-49%). These results surpass previously reported attempts with dual-echo ultrashort echo time, for which the Jaccard distance was in the 47%-79% range (parietal and nasal regions, respectively). Anatomically, the calvaria is consistently well segmented, with frequent but isolated voxel misclassifications. Air cavity walls and bone/fluid interfaces with high anatomic detail, such as the inner ear, remain a challenge.
CONCLUSION: This is the first, to our knowledge, clinical evaluation of skull bone identification based on a ZTE sequence. The results suggest that proton density-weighted ZTE imaging is an efficient means of obtaining high-resolution maps of bone tissue with sufficient anatomic accuracy for, for example, PET attenuation correction.

MR-based attenuation correction is instrumental for integrated PET/MR imaging. It is generally achieved by segmenting MR images into a set of tissue classes with known attenuation properties (e.g., air, lung, bone, fat, soft tissue). Bone identification with MR imaging is, however, quite challenging, because of the low proton density and fast decay time of bone tissue. The clinical evaluation of a novel, recently published method for zero-echo-time (ZTE)-based MR bone depiction and segmentation in the head is presented here.
METHODS: A new paradigm for MR imaging bone segmentation, based on proton density-weighted ZTE imaging, was disclosed earlier in 2014. In this study, we reviewed the bone maps obtained with this method on 15 clinical datasets acquired with a PET/CT/MR trimodality setup. The CT scans acquired for PET attenuation-correction purposes were used as reference for the evaluation. Quantitative measurements based on the Jaccard distance between ZTE and CT bone masks and qualitative scoring of anatomic accuracy by an experienced radiologist and nuclear medicine physician were performed.
RESULTS: The average Jaccard distance between ZTE and CT bone masks evaluated over the entire head was 52% ± 6% (range, 38%-63%). When only the cranium was considered, the distance was 39% ± 4% (range, 32%-49%). These results surpass previously reported attempts with dual-echo ultrashort echo time, for which the Jaccard distance was in the 47%-79% range (parietal and nasal regions, respectively). Anatomically, the calvaria is consistently well segmented, with frequent but isolated voxel misclassifications. Air cavity walls and bone/fluid interfaces with high anatomic detail, such as the inner ear, remain a challenge.
CONCLUSION: This is the first, to our knowledge, clinical evaluation of skull bone identification based on a ZTE sequence. The results suggest that proton density-weighted ZTE imaging is an efficient means of obtaining high-resolution maps of bone tissue with sufficient anatomic accuracy for, for example, PET attenuation correction.

Citations

12 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:March 2015
Deposited On:23 Apr 2015 10:33
Last Modified:05 Apr 2016 19:13
Publisher:Society of Nuclear Medicine
ISSN:0161-5505
Publisher DOI:https://doi.org/10.2967/jnumed.114.149997
PubMed ID:25678489

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations