UZH-Logo

Maintenance Infos

Topographic controls on deep groundwater contributions to mountain headwater streams and sensitivity to available recharge


Welch, Laurie A A; Allen, Diana M M; van Meerveld, H J (2012). Topographic controls on deep groundwater contributions to mountain headwater streams and sensitivity to available recharge. Canadian Water Resources Journal, 37(4):349-371.

Abstract

An important, yet poorly understood, influence on the hydrologic behaviour of mountain headwater streams is deep groundwater (DG) flow, which circulates at depth through the bedrock system and discharges to surface water or shallow groundwater at stream valleys. In this study, two- and three-dimensional hydrogeological models were generated for both generic and real topography. DG contribution areas were delineated using groundwater pathline analysis, and the sensitivity of DG discharge at headwater stream valleys due to changes in applied recharge was investigated. For some streams, the 3-D nested nature of topographically-driven DG flow results in groundwater that is recharged within one headwater stream catchment bypassing the associated stream valley and emerging as DG discharge in a different, relatively deeper stream valley. Contributing areas of DG to headwater streams are thus more complex than would be predicted based on catchment boundaries alone. Differences in DG discharge and DG contributing areas in response to changes in applied recharge are a reflection of differences in topography and suggest that headwater streams within the same watershed differ in their sensitivity to changes in recharge. A small, but significant, temporal response of DG discharge to a change in recharge is found to occur within a 1 to 3 year timeframe, highlighting the importance of variations in DG discharge for stream hydrology. The modelling approach used in this study requires only digital elevation model data, and thus can be used in regions of limited data and in ungauged basins to provide a preliminary indication of relative stream sensitivity to long-term changes in recharge as a result of climate change, forest management practices, or groundwater extraction.

An important, yet poorly understood, influence on the hydrologic behaviour of mountain headwater streams is deep groundwater (DG) flow, which circulates at depth through the bedrock system and discharges to surface water or shallow groundwater at stream valleys. In this study, two- and three-dimensional hydrogeological models were generated for both generic and real topography. DG contribution areas were delineated using groundwater pathline analysis, and the sensitivity of DG discharge at headwater stream valleys due to changes in applied recharge was investigated. For some streams, the 3-D nested nature of topographically-driven DG flow results in groundwater that is recharged within one headwater stream catchment bypassing the associated stream valley and emerging as DG discharge in a different, relatively deeper stream valley. Contributing areas of DG to headwater streams are thus more complex than would be predicted based on catchment boundaries alone. Differences in DG discharge and DG contributing areas in response to changes in applied recharge are a reflection of differences in topography and suggest that headwater streams within the same watershed differ in their sensitivity to changes in recharge. A small, but significant, temporal response of DG discharge to a change in recharge is found to occur within a 1 to 3 year timeframe, highlighting the importance of variations in DG discharge for stream hydrology. The modelling approach used in this study requires only digital elevation model data, and thus can be used in regions of limited data and in ungauged basins to provide a preliminary indication of relative stream sensitivity to long-term changes in recharge as a result of climate change, forest management practices, or groundwater extraction.

Citations

6 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 22 May 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2012
Deposited On:22 May 2015 14:45
Last Modified:05 Apr 2016 19:15
Publisher:Taylor & Francis
ISSN:0701-1784
Publisher DOI:https://doi.org/10.4296/cwrj2011-907
Permanent URL: https://doi.org/10.5167/uzh-110749

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations