UZH-Logo

Maintenance Infos

Solution transformation of Cu2O into CuInS2for solar water splitting


Luo, Jingshan; Tilley, S David; Steier, Ludmilla; Schreier, Marcel; Mayer, Matthew T; Fan, Hong Jin; Grätzel, Michael (2015). Solution transformation of Cu2O into CuInS2for solar water splitting. Nano letters, 15(2):1395-1402.

Abstract

Though Cu2O has demonstrated high performance as a photocathode for solar water splitting, its band gap is too large for efficient use as the bottom cell in tandem configurations. Accordingly, copper chalcopyrites have recently attracted much attention for solar water splitting due to their smaller and tunable band gaps. However, their fabrication is mainly based on vacuum evaporation, which is an expensive and energy consuming process. Here, we have developed a novel and low-cost solution fabrication method, and CuInS2 was chosen as a model material due to its smaller band gap compared to Cu2O and relatively simple composition. The nanostructured CuInS2 electrodes were synthesized at low temperature in crystalline form by solvothermal treatment of electrochemically deposited Cu2O films. Following the coating of overlayers and decoration with Pt catalyst, the as-fabricated CuInS2 electrode demonstrated water splitting photocurrents of 3.5 mA cm(-2) under simulated solar illumination. To the best of our knowledge, this is the highest performance yet reported for a solution-processed copper chalcopyrite electrode for solar water splitting. Furthermore, the electrode showed good stability and had a broad incident photon-to-current efficiency (IPCE) response to wavelengths beyond 800 nm, consistent with the smaller bandgap of this material.

Though Cu2O has demonstrated high performance as a photocathode for solar water splitting, its band gap is too large for efficient use as the bottom cell in tandem configurations. Accordingly, copper chalcopyrites have recently attracted much attention for solar water splitting due to their smaller and tunable band gaps. However, their fabrication is mainly based on vacuum evaporation, which is an expensive and energy consuming process. Here, we have developed a novel and low-cost solution fabrication method, and CuInS2 was chosen as a model material due to its smaller band gap compared to Cu2O and relatively simple composition. The nanostructured CuInS2 electrodes were synthesized at low temperature in crystalline form by solvothermal treatment of electrochemically deposited Cu2O films. Following the coating of overlayers and decoration with Pt catalyst, the as-fabricated CuInS2 electrode demonstrated water splitting photocurrents of 3.5 mA cm(-2) under simulated solar illumination. To the best of our knowledge, this is the highest performance yet reported for a solution-processed copper chalcopyrite electrode for solar water splitting. Furthermore, the electrode showed good stability and had a broad incident photon-to-current efficiency (IPCE) response to wavelengths beyond 800 nm, consistent with the smaller bandgap of this material.

Citations

20 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2015
Deposited On:27 May 2015 15:53
Last Modified:05 Apr 2016 19:15
Publisher:American Chemical Society (ACS)
ISSN:1530-6984
Publisher DOI:https://doi.org/10.1021/nl504746b
PubMed ID:25585159

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations