UZH-Logo

Maintenance Infos

Identification and characterization of the nuclear localization/retention signal in the EWS proto-oncoprotein.


Zakaryan, R P; Gehring, H (2006). Identification and characterization of the nuclear localization/retention signal in the EWS proto-oncoprotein. Journal of Molecular Biology, 363(1):27-38.

Abstract

Ewing sarcoma (EWS) protein, a member of a large family of RNA-binding proteins, contains an N-terminal transcriptional activation domain (EAD) and a C-terminal RNA-binding domain (RBD). Due to its multifunctional properties EWS protein is involved in processes such as gene expression, RNA processing and transport, and cell signaling. Chimeric EWS proteins generated by chromosomal translocations cause malignant tumors. EWS protein is located predominantly in the nucleus, but was found also in the cytosol and associated with the cell membrane. The determinants responsible for the nuclear localization of the protein were as yet unknown. We identified the nuclear localization signal of EWS protein at its C terminus (C-NLS), which is required for the nuclear import and retention of the protein. The C-NLS sequence is conserved in related proto-oncoproteins suggesting an NLS function also in these proteins. Two arginine residues, due to their positive charge, a proline residue and a tyrosine residue are essential for C-NLS function. The nuclear localization of EWS protein is independent of the regions in RBD containing numerous arginine methylation sites, RNA-recognition and zinc finger motifs. Regions in EAD guide the subnuclear partition of EWS protein and contain another but different NLS that allows nucleocytoplasmic shuttling of the N-terminal domain.

Ewing sarcoma (EWS) protein, a member of a large family of RNA-binding proteins, contains an N-terminal transcriptional activation domain (EAD) and a C-terminal RNA-binding domain (RBD). Due to its multifunctional properties EWS protein is involved in processes such as gene expression, RNA processing and transport, and cell signaling. Chimeric EWS proteins generated by chromosomal translocations cause malignant tumors. EWS protein is located predominantly in the nucleus, but was found also in the cytosol and associated with the cell membrane. The determinants responsible for the nuclear localization of the protein were as yet unknown. We identified the nuclear localization signal of EWS protein at its C terminus (C-NLS), which is required for the nuclear import and retention of the protein. The C-NLS sequence is conserved in related proto-oncoproteins suggesting an NLS function also in these proteins. Two arginine residues, due to their positive charge, a proline residue and a tyrosine residue are essential for C-NLS function. The nuclear localization of EWS protein is independent of the regions in RBD containing numerous arginine methylation sites, RNA-recognition and zinc finger motifs. Regions in EAD guide the subnuclear partition of EWS protein and contain another but different NLS that allows nucleocytoplasmic shuttling of the N-terminal domain.

Citations

48 citations in Web of Science®
51 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 11 Feb 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:13 October 2006
Deposited On:11 Feb 2008 12:20
Last Modified:05 Apr 2016 12:17
Publisher:Elsevier
ISSN:0022-2836
Publisher DOI:10.1016/j.jmb.2006.08.018
PubMed ID:16965792
Permanent URL: http://doi.org/10.5167/uzh-1115

Download

[img]
Filetype: PDF - Registered users only
Size: 747kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations