UZH-Logo

Maintenance Infos

Increased adrenal androgen levels in patients with Prader-Willi syndrome are associated with insulin, IGF-I, and leptin, but not with measures of obesity


L'Allemand, Dagmar; Eiholzer, Urs; Rousson, Valentin; Girard, Jürg; Blum, Werner; Torresani, Toni; Gasser, Theo (2002). Increased adrenal androgen levels in patients with Prader-Willi syndrome are associated with insulin, IGF-I, and leptin, but not with measures of obesity. Hormone Research, 58(5):215-222.

Abstract

BACKGROUND/AIM: Since hyperandrogenism in simple obesity is assumed to arise from hyperinsulinism and/or increased insulin-like growth factor I (IGF-I) or leptin levels, we examined how in patients with Prader-Willi syndrome (PWS), the most frequent form of syndromal obesity, the accelerated adrenarche can be explained despite hypothalamic-pituitary insufficiency with low levels of insulin and IGF-I.
METHODS: In 23 children with PWS and a mean age of 5.6 years, height, weight, fat mass, fasting insulin concentration, insulin resistance (by HOMA-R; see text), and leptin and IGF-I levels were determined to test whether they explain the variance of the levels of dehydroepiandrosterone (DHEA) and its sulfate (DHEAS), of androstenedione, and of cortisol before and during 42 months of therapy with growth hormone.
RESULTS: The baseline DHEAS, DHEA, and androstenedione concentrations were increased as compared with age-related reference values, whereas the cortisol level was always normal. During growth hormone treatment, the DHEA concentration further rose, and the cortisol level decreased significantly. The insulin and IGF-I concentrations were low before therapy, while fat mass and leptin level were elevated. The hormonal covariates provided alone or together between 24 and 60% of the explanation for the variance of adrenal androgen levels, but the anthropometric variables did not correlate with them.
CONCLUSIONS: In children with PWS, elevated androgen levels correlate with hormones that are usually associated with adiposity. However, the lack of direct correlations between disturbed body composition and androgen levels as well as the increased sensitivity to insulin and IGF-I are abnormalities specific to PWS, potentially caused by the underlying hypothalamic defect.

Abstract

BACKGROUND/AIM: Since hyperandrogenism in simple obesity is assumed to arise from hyperinsulinism and/or increased insulin-like growth factor I (IGF-I) or leptin levels, we examined how in patients with Prader-Willi syndrome (PWS), the most frequent form of syndromal obesity, the accelerated adrenarche can be explained despite hypothalamic-pituitary insufficiency with low levels of insulin and IGF-I.
METHODS: In 23 children with PWS and a mean age of 5.6 years, height, weight, fat mass, fasting insulin concentration, insulin resistance (by HOMA-R; see text), and leptin and IGF-I levels were determined to test whether they explain the variance of the levels of dehydroepiandrosterone (DHEA) and its sulfate (DHEAS), of androstenedione, and of cortisol before and during 42 months of therapy with growth hormone.
RESULTS: The baseline DHEAS, DHEA, and androstenedione concentrations were increased as compared with age-related reference values, whereas the cortisol level was always normal. During growth hormone treatment, the DHEA concentration further rose, and the cortisol level decreased significantly. The insulin and IGF-I concentrations were low before therapy, while fat mass and leptin level were elevated. The hormonal covariates provided alone or together between 24 and 60% of the explanation for the variance of adrenal androgen levels, but the anthropometric variables did not correlate with them.
CONCLUSIONS: In children with PWS, elevated androgen levels correlate with hormones that are usually associated with adiposity. However, the lack of direct correlations between disturbed body composition and androgen levels as well as the increased sensitivity to insulin and IGF-I are abnormalities specific to PWS, potentially caused by the underlying hypothalamic defect.

Citations

4 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 17 Jul 2015
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2002
Deposited On:17 Jul 2015 08:18
Last Modified:07 Jul 2016 14:02
Publisher:Karger
ISSN:0301-0163
Publisher DOI:https://doi.org/10.1159/000066263
PubMed ID:12401940

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 74kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations