UZH-Logo

Maintenance Infos

Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK.


Kasper, P; Christen, P; Gehring, H (2000). Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK. Proteins, 40(2):185-192.

Abstract

We describe a methodology to calculate the relative free energies of protein-peptide complex formation. The interaction energy was decomposed into nonpolar, electrostatic and entropic contributions. A free energy-surface area relationship served to calculate the nonpolar free energy term. The electrostatic free energy was calculated with the finite difference Poisson-Boltzmann method and the entropic contribution was estimated from the loss in the conformational entropy of the peptide side chains. We applied this methodology to a series of DnaK*peptide complexes. On the basis of the single known crystal structure of the peptide-binding domain of DnaK with a bound heptapeptide, we modeled ten other DnaK*heptapeptide complexes with experimentally measured K(d) values from 0.06 microM to 11 microM, using molecular dynamics to refine the structures of the complexes. Molecular dynamic trajectories, after equilibration, were used for calculating the energies with greater accuracy. The calculated relative binding free energies were compared with the experimentally determined free energies. Linear scaling of the calculated terms was applied to fit them to the experimental values. The calculated binding free energies were between -7.1 kcal/mol and - 9.4 kcal/mol with a correlation coefficient of 0.86. The calculated nonpolar contributions are mainly due to the central hydrophobic binding pocket of DnaK for three amino acid residues. Negative electrostatic fields generated by the protein increase the binding affinity for basic residues flanking the hydrophobic core of the peptide ligand. Analysis of the individual energy contributions indicated that the nonpolar contributions are predominant compared to the other energy terms even for peptides with low affinity and that inclusion of the change in conformational entropy of the peptide side chains does not improve the discriminative power of the calculation. The method seems to be useful for predicting relative binding energies of peptide ligands of DnaK and might be applicable to other protein-peptide systems, particularly if only the structure of one protein-ligand complex is available.

We describe a methodology to calculate the relative free energies of protein-peptide complex formation. The interaction energy was decomposed into nonpolar, electrostatic and entropic contributions. A free energy-surface area relationship served to calculate the nonpolar free energy term. The electrostatic free energy was calculated with the finite difference Poisson-Boltzmann method and the entropic contribution was estimated from the loss in the conformational entropy of the peptide side chains. We applied this methodology to a series of DnaK*peptide complexes. On the basis of the single known crystal structure of the peptide-binding domain of DnaK with a bound heptapeptide, we modeled ten other DnaK*heptapeptide complexes with experimentally measured K(d) values from 0.06 microM to 11 microM, using molecular dynamics to refine the structures of the complexes. Molecular dynamic trajectories, after equilibration, were used for calculating the energies with greater accuracy. The calculated relative binding free energies were compared with the experimentally determined free energies. Linear scaling of the calculated terms was applied to fit them to the experimental values. The calculated binding free energies were between -7.1 kcal/mol and - 9.4 kcal/mol with a correlation coefficient of 0.86. The calculated nonpolar contributions are mainly due to the central hydrophobic binding pocket of DnaK for three amino acid residues. Negative electrostatic fields generated by the protein increase the binding affinity for basic residues flanking the hydrophobic core of the peptide ligand. Analysis of the individual energy contributions indicated that the nonpolar contributions are predominant compared to the other energy terms even for peptides with low affinity and that inclusion of the change in conformational entropy of the peptide side chains does not improve the discriminative power of the calculation. The method seems to be useful for predicting relative binding energies of peptide ligands of DnaK and might be applicable to other protein-peptide systems, particularly if only the structure of one protein-ligand complex is available.

Citations

25 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 August 2000
Deposited On:11 Feb 2008 12:20
Last Modified:05 Apr 2016 12:17
Publisher:Wiley-Blackwell
ISSN:0887-3585
Publisher DOI:10.1002/(SICI)1097-0134(20000801)40:2<185::AID-PROT20>3.0.CO;2-X
PubMed ID:10842335

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations