UZH-Logo

The V3 loop of human immunodeficiency virus type-1 envelope protein is a high-affinity ligand for immunophilins present in human blood.


Endrich, M M; Gehring, H (1998). The V3 loop of human immunodeficiency virus type-1 envelope protein is a high-affinity ligand for immunophilins present in human blood. FEBS Journal, 252(3):441-446.

Abstract

Human immunodeficiency virus type-1 (HIV-1) infection requires binding of the envelope protein gp120 to host CD4 receptors and the action of the chemokine receptors CXCR4 or CCR5, which define cell tropism. The proline-containing V3 loop of gp120 determines the selection of the chemokine receptor and participates in conformational changes on binding of gp120 to CD4. In this study, we show that macrophage-tropic and T-cell-tropic V3 loop peptides bind specifically to the active site of the immunophilins FK506-binding protein (FKBP12), and cyclophilins A and B. Macrophage-tropic and T-cell-tropic V3 loop peptides inhibited the peptidyl-prolyl cis-trans isomerase (PPIase) activities of the immunophilins. Kd values in the range 0.036-4.1 microM were determined with V3 loop peptides labeled with an environmentally sensitive fluorophore. The observed binding properties of the V3 loop peptides reveal structural motifs of linear water-soluble peptidic substrates for tight interaction with immunophilins. FKBP12, and cyclophilins A and B were found to be present in normal human blood in the ranges 0.8-1.7, 1.4-2.3 and 2.4-3.1 nM, respectively, as demonstrated by PPIase activity measurements and western blot analysis. Cyclophilins A and B levels in serum of HIV-1-infected individuals were increased 3.6-fold and 1.6-fold. Due to the interaction of immunophilins with V3 loop peptides and with the envelope protein gp120, a role of immunophilins in HIV pathogenesis as conformases or docking mediators seems possible, since immunophilin receptors on cell membranes and immunophilin-related virulence factors of pathogens have been identified.

Human immunodeficiency virus type-1 (HIV-1) infection requires binding of the envelope protein gp120 to host CD4 receptors and the action of the chemokine receptors CXCR4 or CCR5, which define cell tropism. The proline-containing V3 loop of gp120 determines the selection of the chemokine receptor and participates in conformational changes on binding of gp120 to CD4. In this study, we show that macrophage-tropic and T-cell-tropic V3 loop peptides bind specifically to the active site of the immunophilins FK506-binding protein (FKBP12), and cyclophilins A and B. Macrophage-tropic and T-cell-tropic V3 loop peptides inhibited the peptidyl-prolyl cis-trans isomerase (PPIase) activities of the immunophilins. Kd values in the range 0.036-4.1 microM were determined with V3 loop peptides labeled with an environmentally sensitive fluorophore. The observed binding properties of the V3 loop peptides reveal structural motifs of linear water-soluble peptidic substrates for tight interaction with immunophilins. FKBP12, and cyclophilins A and B were found to be present in normal human blood in the ranges 0.8-1.7, 1.4-2.3 and 2.4-3.1 nM, respectively, as demonstrated by PPIase activity measurements and western blot analysis. Cyclophilins A and B levels in serum of HIV-1-infected individuals were increased 3.6-fold and 1.6-fold. Due to the interaction of immunophilins with V3 loop peptides and with the envelope protein gp120, a role of immunophilins in HIV pathogenesis as conformases or docking mediators seems possible, since immunophilin receptors on cell membranes and immunophilin-related virulence factors of pathogens have been identified.

Citations

35 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:15 March 1998
Deposited On:11 Feb 2008 12:20
Last Modified:05 Apr 2016 12:17
Publisher:Wiley-Blackwell
ISSN:0014-2956
Publisher DOI:10.1046/j.1432-1327.1998.2520441.x
PubMed ID:9546659

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations