UZH-Logo

Maintenance Infos

A Novel Multipeptide Microarray for the Specific and Sensitive Mapping of Linear IgE-Binding Epitopes of Food Allergens


Kühne, Yvonne; Reese, Gerald; Ballmer-Weber, Barbara K; Niggemann, Bodo; Hanschmann, Kay-Martin; Vieths, Stefan; Holzhauser, Thomas (2015). A Novel Multipeptide Microarray for the Specific and Sensitive Mapping of Linear IgE-Binding Epitopes of Food Allergens. International Archives of Allergy and Immunology, 166(3):213-224.

Abstract

BACKGROUND The identification of B-cell epitopes of food allergens can possibly lead to novel diagnostic tools and therapeutic reagents for food allergy. We sought to develop a flexible, low-tech, cost-effective and reproducible multipeptide microarray for the research environment to enable large-scale screening of IgE epitopes of food allergens. METHODS Overlapping peptides (15-mer, 4 amino acid offset) covering the primary sequence of either peanut allergen Ara h 1 or all 3 subunits of the soybean allergen Gly m 5 were simultaneously synthesized in-house on a porous cellulose matrix. Identical peptide microarrays created with up to 384 duplicate peptide-cellulose microspots each were investigated for specificity and sensitivity in IgE immunodetection and in direct experimental comparison to the formerly established SPOT™ membrane technique. RESULTS The in-house microarray identified with 98% reproducibility the same IgE-binding peptides as the SPOT™ membrane technique. Additional IgE-binding peptides were identified using the microarray. While the sensitivity was increased between 2- and 20-fold, the amount of human serum required was reduced by at least two thirds over the SPOT™ membrane technique using the microarray. After subtraction of the potential background, we did not observe non-specific binding to the presented peptides on microarray. CONCLUSIONS The novel peptide microarray allows simple and cost-effective screening for potential epitopes of large allergenic legume seed storage proteins, and it could be adapted for other food allergens as well, to study allergenic epitopes at the individual subject level in large paediatric and adult study groups of food allergic subjects.

Abstract

BACKGROUND The identification of B-cell epitopes of food allergens can possibly lead to novel diagnostic tools and therapeutic reagents for food allergy. We sought to develop a flexible, low-tech, cost-effective and reproducible multipeptide microarray for the research environment to enable large-scale screening of IgE epitopes of food allergens. METHODS Overlapping peptides (15-mer, 4 amino acid offset) covering the primary sequence of either peanut allergen Ara h 1 or all 3 subunits of the soybean allergen Gly m 5 were simultaneously synthesized in-house on a porous cellulose matrix. Identical peptide microarrays created with up to 384 duplicate peptide-cellulose microspots each were investigated for specificity and sensitivity in IgE immunodetection and in direct experimental comparison to the formerly established SPOT™ membrane technique. RESULTS The in-house microarray identified with 98% reproducibility the same IgE-binding peptides as the SPOT™ membrane technique. Additional IgE-binding peptides were identified using the microarray. While the sensitivity was increased between 2- and 20-fold, the amount of human serum required was reduced by at least two thirds over the SPOT™ membrane technique using the microarray. After subtraction of the potential background, we did not observe non-specific binding to the presented peptides on microarray. CONCLUSIONS The novel peptide microarray allows simple and cost-effective screening for potential epitopes of large allergenic legume seed storage proteins, and it could be adapted for other food allergens as well, to study allergenic epitopes at the individual subject level in large paediatric and adult study groups of food allergic subjects.

Citations

2 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 04 Nov 2015
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Dermatology Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2015
Deposited On:04 Nov 2015 15:20
Last Modified:30 May 2016 00:00
Publisher:Karger
ISSN:1018-2438
Publisher DOI:https://doi.org/10.1159/000381344
PubMed ID:25924626

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 760kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations