UZH-Logo

Maintenance Infos

Cytolytic T cell reactivity against melanoma-associated differentiation antigens in peripheral blood of melanoma patients and healthy individuals


Jäger, E; Ringhoffer, M; Arand, M; Karbach, J; Jäger, D; Ilsemann, C; Hagedorn, M; Oesch, F; Knuth, A (1996). Cytolytic T cell reactivity against melanoma-associated differentiation antigens in peripheral blood of melanoma patients and healthy individuals. Melanoma research, 6(6):419-425.

Abstract

Antigenic peptides derived from several differentiation antigens of the melanocyte lineage were recently identified in human melanomas as targets for HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs). To examine their potential role in tumour-directed immune responses in vivo, we determined CTL reactivity against seven antigenic peptides derived from the Melan A/MART-1, tyrosinase and gp100/Pmel17 antigens in the peripheral blood of 10 HLA-A2+ healthy controls and 26 HLA-A2+ melanoma patients. The influenza matrix peptide (GILGFVFTL) presented by HLA-A2.1 was used as a control peptide. CTL reactivity was assessed in a mixed lymphocyte 'peptide' culture assay. Reactivity against Melan A/MART-1-derived peptide antigens was readily detectable in both melanoma patients and controls. Reactivity directed against tyrosinase-derived peptide antigens was also detected in both melanoma patients and healthy individuals, but less frequently. A measurable response against gp100/Pmel17-derived antigens was found in 1/10 controls and in 1/26 of the melanoma patients. Reactivity against the influenza matrix peptide was common in both melanoma patients and controls. Our findings show that precursor CTLs against melanocyte differentiation antigens can be detected in peripheral blood of melanoma patients and healthy individuals. The pattern of CTL reactivity directed against melanoma-associated antigens does not seem to be altered in melanoma patients. Despite antigen-specific CTL reactivity, tumour growth was not prevented in melanoma patients and autoimmune phenomena were not detected in healthy individuals. It remains to be determined whether precursor CTLs recognizing melanocyte differentiation antigens can be activated by immunization and lead to effective tumour rejection in vivo.

Abstract

Antigenic peptides derived from several differentiation antigens of the melanocyte lineage were recently identified in human melanomas as targets for HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs). To examine their potential role in tumour-directed immune responses in vivo, we determined CTL reactivity against seven antigenic peptides derived from the Melan A/MART-1, tyrosinase and gp100/Pmel17 antigens in the peripheral blood of 10 HLA-A2+ healthy controls and 26 HLA-A2+ melanoma patients. The influenza matrix peptide (GILGFVFTL) presented by HLA-A2.1 was used as a control peptide. CTL reactivity was assessed in a mixed lymphocyte 'peptide' culture assay. Reactivity against Melan A/MART-1-derived peptide antigens was readily detectable in both melanoma patients and controls. Reactivity directed against tyrosinase-derived peptide antigens was also detected in both melanoma patients and healthy individuals, but less frequently. A measurable response against gp100/Pmel17-derived antigens was found in 1/10 controls and in 1/26 of the melanoma patients. Reactivity against the influenza matrix peptide was common in both melanoma patients and controls. Our findings show that precursor CTLs against melanocyte differentiation antigens can be detected in peripheral blood of melanoma patients and healthy individuals. The pattern of CTL reactivity directed against melanoma-associated antigens does not seem to be altered in melanoma patients. Despite antigen-specific CTL reactivity, tumour growth was not prevented in melanoma patients and autoimmune phenomena were not detected in healthy individuals. It remains to be determined whether precursor CTLs recognizing melanocyte differentiation antigens can be activated by immunization and lead to effective tumour rejection in vivo.

Citations

45 citations in Web of Science®
45 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 29 Oct 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:December 1996
Deposited On:29 Oct 2015 13:24
Last Modified:20 Jun 2016 23:58
Publisher:Lippincott Williams & Wilkins
ISSN:0960-8931
PubMed ID:9013479

Download

[img]
Preview
Filetype: PDF
Size: 618kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations