Gene evolution of epoxide hydrolases and recommended nomenclature

Beetham, J K; Grant, D; Arand, M; Garbarino, J; Kiyosue, T; Pinot, F; Oesch, F; Belknap, W R; Shinozaki, K; Hammock, B D

Abstract: We have analyzed amino acid sequence relationships among soluble and microsomal epoxide hydrolases, haloacid dehalogenases, and a haloalkane dehalogenase. The amino-terminal residues (1-229) of mammalian soluble epoxide hydrolase are homologous to a haloacid dehalogenase. The carboxy-terminal residues (230-554) of mammalian soluble epoxide hydrolase are homologous to haloalkane dehalogenase, to plant soluble epoxide hydrolase, and to microsomal epoxide hydrolase. The shared identity between the haloacid and haloalkane dehalogenases does not indicate relatedness between these two types of dehalogenases. The amino-terminal and carboxy-terminal homologies of mammalian soluble epoxide hydrolase to the respective dehalogenases suggests that this epoxide hydrolase, but not the soluble epoxide hydrolase of plant or the microsomal epoxide hydrolase, derives from a gene fusion. The homology of microsomal to soluble epoxide hydrolase suggests they derive from a gene duplication, probably of an ancestral bacterial (epoxide) hydrolase gene. Based on homology to haloalkane dehalogenase, the catalytic residues for the soluble and microsomal epoxide hydrolases are predicted. A nomenclature system based on divergent molecular evolution is proposed for these epoxide hydrolases.

DOI: https://doi.org/10.1089/dna.1995.14.61

Posted at the Zurich Open Repository and Archive, University of Zurich

ZORA URL: https://doi.org/10.5167/uzh-114008

Originally published at:
Beetham, J K; Grant, D; Arand, M; Garbarino, J; Kiyosue, T; Pinot, F; Oesch, F; Belknap, W R; Shinozaki, K; Hammock, B D (1995). Gene evolution of epoxide hydrolases and recommended nomenclature. DNA and cell biology. 14(1):61-71.
DOI: https://doi.org/10.1089/dna.1995.14.61
Gene Evolution of Epoxide Hydrolases and Recommended Nomenclature

JEFFREY K. BEETHAM, DAVID GRANT, MICHAEL ARAND, JOAN GARBARINO, TOMOHiro Kiyosue, FRANCK PINOT, FRANZ OESCH, WILLIAM R. BELKNAP, KAZuo SHINOZAKI, and BRUCE D. HAMMOCK

ABSTRACT

We have analyzed amino acid sequence relationships among soluble and microsomal epoxide hydrolases, haloacid dehalogenases, and a haloalkane dehalogenase. The amino-terminal residues (1–229) of mammalian soluble epoxide hydrolase are homologous to a haloacid dehalogenase. The carboxy-terminal residues (230–554) of mammalian soluble epoxide hydrolase are homologous to haloalkane dehalogenase, to plant soluble epoxide hydrolase, and to microsomal epoxide hydrolase. The shared identity between the haloacid and haloalkane dehalogenases does not indicate relatedness between these two types of dehalogenases. The amino-terminal and carboxy-terminal homologies of mammalian soluble epoxide hydrolase to the respective dehalogenases suggests that this epoxide hydrolase, but not the soluble epoxide hydrolase of plant or the microsomal epoxide hydrolase, derives from a gene fusion. The homology of microsomal to soluble epoxide hydrolase suggests they derive from a gene duplication, probably of an ancestral bacterial (epoxide) hydrolase gene. Based on homology to haloalkane dehalogenase, the catalytic residues for the soluble and microsomal epoxide hydrolases are predicted. A nomenclature system based on divergent molecular evolution is proposed for these epoxide hydrolases.

INTRODUCTION

Hydrolisis is a central process of many metabolic pathways. Hydrolytic enzymes catalyze this process and include many of the lipases, esterases, proteases, epoxide hydrolases, and dehalogenases. These enzymes function in metabolizing both endogenous and xenobiotic-derived compounds.

The epoxide hydrolases (EH, E.C.3.3.2.3) add water to epoxides to form the corresponding diol. The epoxide hydrolases are grouped by characteristics of enzymatic activity and biochemical separation. In mammals, these groups include the soluble epoxide hydrolases (sEH, also referred to as cytosolic EH), microsomal epoxide hydrolases (mEH), leukotriene A4 hydrolase (LTA4H), cholesterol epoxide hydrolase (Watabe et al., 1981), and hepoxilin hydrolase (Pace-Ascik and Lee, 1989). The LTA4H functions to produce hormone derivatives of arachidonic acid (Samuelsson, 1983), as may the sEH; mammalian sEHs hydrolyze epoxides of arachidonic acids with regio and enantioselectivity (Oliv et al., 1982; Chacos et al., 1983; Zeldin et al., 1993), forming and/or degrading oxylipins that may have biological roles. The sEH is also implicated in decreasing deleterious effects of oxidative stress due to endogenous and xenobiotic-derived compounds (El-Tantawy and Hammock, 1980; Kramer et al., 1991). A principal function of the mEH is in detoxifying xenobiotics (Oesch, 1973).

Epoxide hydrolases are less understood in nonmammalian species. As discussed below, several EHs have been described from plants where they may have some of the same roles attributed to mammalian EHs in addition to having involvement in production of cutin (complex polymers de-
rived largely from hydroxylated fatty acids and found on the external surfaces of many plants and phytoalexins (defensive compounds of diverse structures that are induced by exposure to foreign compounds, organisms, and/or by damage) (Blee and Schuber, 1992; Kiyosue et al., 1994; Stapleton et al., 1994). In insects, an EH with activity against octane oxide has been purified (Muffin and Wilkinson, 1980) and appears distinct from other insect EHs that degrade certain cyclodecane insecticides and insect juvenile hormone. The insect EHs that degrade the juvenile hormones may be important regulators of insect development and reproduction (Hammock, 1985; Halarnkar and Schooley, 1990; Harshman et al., 1991).

We have been investigating the biological functions of the EHs, especially of sEH. Most of our present understanding of the sEHs derives from biochemical and physiological analysis. An evolutionary analysis of the sEHs based on molecular aspects may provide a framework within which biochemical and physiologic data of analogous and/or homologous EH activities from varied species may be compared. The recent isolation of cDNAs encoding sEHs of mammals and plants permits a molecular evolutionary analysis of these enzymes.

The first cDNAs encoding sEHs of mammals (human, mouse, and rat) were reported in 1993 (Table 1). More recently, the cDNAs for two plant sEHs (Solanum tuberosum and Arabidopsis thaliana) have been isolated (Table 1). While the recombinant sEH of plants has been shown to have mammalian-sEH like activities, the plant enzyme is only two-thirds the size of mammalian sEH and has relatively low overall identity. The evolutionary relatedness of these enzymes has not been established.

This paper describes the results of comparing mammalian sEH sequences to other EHs as well as to sequences on file with nucleic acid and protein databases. We propose that the mammalian sEH is composed of two evolutionarily distinct regions. The amino-terminal region is homologous to bacterial haloacid dehalogenase (HAD1; Table 1). The carboxy-terminal region is homologous to sEH of plant, mEH, and bacterial haloalkane dehalogenase (HLD1; Table 1).

METHODS

Protein sequences were analyzed with FASTA, PILEUP, GAP, and BESTFIT programs on the University of Wisconsin Genetic Computer Group (GCG) program version 7.0 (Devereux, 1988; Devereux et al., 1984), and with BLAST (Altschul et al., 1990) utilizing the BLOSUM 62 matrix (Henikoff and Henikoff, 1992) on the National Center for Biotechnology Information (NCBI) e-mail server (blast@ncbi.nlm.nih.gov). Protein sequences were screened against database sequence libraries utilizing FASTA and BLAST. Statistical significance of FASTA search products was evaluated using RDP2 (Pearson and Lipman, 1988) on the FLAT e-mail server at Gunma University, Japan (flatnetserv@smlab.eg.gunma-u.ac.jp). Sequence pairs were aligned using GAP and BESTFIT with a gap weight of 3.0 and length weight of 0.10. Simultaneous alignment of greater than two sequences was by PILEUP.

RESULTS

Comparison of human sEH (hsEH) to all sEHs with FASTA yielded optimized scores, all in excess of 400 (Table 2), and FASTA alignments over essentially all (> 95%) of the target sequences. The corresponding BLAST scores for the sEHs were greater than 140 with probabilities of less than 2.1e-26. The percent identity shared between the sEHs varies from 30 to 92% (Table 2). Figure 1 portrays an

<table>
<thead>
<tr>
<th>Enzyme name</th>
<th>Organism</th>
<th>Abbr.</th>
<th>Acc. #</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble epoxide hydrolase</td>
<td>Human</td>
<td>hsEH</td>
<td>L05779</td>
<td>(Beetham et al., 1993)</td>
</tr>
<tr>
<td>Soluble epoxide hydrolase</td>
<td>Mouse</td>
<td>maEH</td>
<td>L05781</td>
<td>(Gran et al., 1993)</td>
</tr>
<tr>
<td>Soluble epoxide hydrolase</td>
<td>Rat</td>
<td>rsEH</td>
<td>X65083</td>
<td>(Knehr et al., 1993)</td>
</tr>
<tr>
<td>Soluble epoxide hydrolase</td>
<td>Potato (S. tuberosum)</td>
<td>psEH</td>
<td>U02497</td>
<td>(Stapleton et al., 1994)</td>
</tr>
<tr>
<td>Soluble epoxide hydrolase</td>
<td>Mouse-eared cress</td>
<td>astEH</td>
<td>D16628</td>
<td>(Kiyosue et al., 1994)</td>
</tr>
<tr>
<td>Microsomal epoxide hydrolase</td>
<td>Human</td>
<td>hmEH</td>
<td>J03518</td>
<td>(Skoda et al., 1988)</td>
</tr>
<tr>
<td>Microsomal epoxide hydrolase</td>
<td>Rat</td>
<td>mmEH</td>
<td>A26732</td>
<td>(Falany et al., 1987)</td>
</tr>
<tr>
<td>Microsomal epoxide hydrolase</td>
<td>Rabbit</td>
<td>bmEH</td>
<td>S04342</td>
<td>(Hassett et al., 1989)</td>
</tr>
<tr>
<td>Leukotriene A4 hydrolase</td>
<td>Human</td>
<td>LTA,H</td>
<td>S02959</td>
<td>(Funk et al., 1987)</td>
</tr>
<tr>
<td>Haloacid dehalogenase</td>
<td>Pseudomonas sp.</td>
<td>HAD1</td>
<td>P24069</td>
<td>(Schneider et al., 1991)</td>
</tr>
<tr>
<td>Haloacid dehalogenase</td>
<td>Xanthobacter autotrophicus</td>
<td>HAD2</td>
<td>M81691</td>
<td>(Pieog et al., 1991)</td>
</tr>
<tr>
<td>Haloacid dehalogenase</td>
<td>Bacterium</td>
<td>HAD3</td>
<td>J30932</td>
<td>(Not published)</td>
</tr>
<tr>
<td>Haloacid dehalogenase</td>
<td>Pseudomonas sp.</td>
<td>HAD4</td>
<td>P24070</td>
<td>(Schneider et al., 1991)</td>
</tr>
<tr>
<td>Haloacid dehalogenase</td>
<td>Pseudomonas cepacia</td>
<td>HAD5</td>
<td>S29096</td>
<td>(Muriyama et al., 1992)</td>
</tr>
<tr>
<td>Haloacid dehalogenase</td>
<td>Pseudomonas putida</td>
<td>HAD6</td>
<td>A44830</td>
<td>(Jones et al., 1992)</td>
</tr>
<tr>
<td>Haloalkane dehalogenase</td>
<td>Xanthobacter autotrophicus</td>
<td>HLD1</td>
<td>P22643</td>
<td>(Janssen et al., 1989)</td>
</tr>
</tbody>
</table>

Accession number (Acc. #) corresponds to the unique DNA sequence identifier used by the sequence database. The deduced protein sequences of these DNA sequences were used for analysis of homology. (ABRV. = abbreviation)
alignment of all sEHs. These data clearly indicate that the sEHs are homologous, but that the sEHs of plant lack the amino-terminal region of mammalian sEH.

Utilizing the FASTA and BLAST programs to query the sequence databases with the amino or carboxy terminus of hsEH, and amino-terminal homology to haloalcohol dehalogenase HAD1 and a carboxy-terminal homology to haloalkane dehalogenase HLD1 were indicated. The search scores, corresponding probabilities, and residues aligned are shown in Table 3. The FASTA probability factors for both amino- and carboxy-terminal identities between hsEH, and the dehalogenases were greater than 10 standard deviation units, strongly indicating evolutionary relationship; factors greater than 3 are considered as possibly significant, greater than 6 as probably significant, and greater than 10 as significant (Lipman and Pearson, 1985).

The percent identities and FASTA scores of HAD1 and HLD1 compared to all sEHs are shown in Table 2. The FASTA scores for HAD1 compared to mammalian sEH are all greater than 100, but compared to plant sEH they are less than 40; these scores indicate significant identity of HAD1 to mammalian sEH but not to plant enzymes. The FASTA scores for HLD1 compared to all sEHs are greater than 126. Based on these identities, alignments of the human sEH with the HAD1 and HLD1 are shown (Fig. 2). Three catalytic residues of HLD1 are conserved in all sEHs based on this alignment ("*" residues, Fig. 2b). The FASTA score of 31 for comparison of HLD1 to HAD1 (Table 2) does not indicate a significant similarity.

By sequence analysis the mEHs are homologous to the sEHs and HLD1. The percent shared identities and FASTA scores are shown in Table 2. Although the percent identities of mEH's to sEH's are low (19–25%), the local similarities determined in the FASTA analysis are on the cusp between possibly and probably significant (Table 3). Further support for homology is that in aligning the mEHs with sEHs and HLD1, the three catalytic residues of HLD1 are conserved, but the acidic Asp of HLD1 is replaced with Gln in mEH (Fig. 3a). It should be noted that a partial sequence identity between the mEH and HLD1 over 78 residues was noted on cloning the HLD1 (Janssen et al., 1989).

The overlap of the linear sequences of these EHs and dehalogenases is shown (Fig. 4a). The evolutionary relationships of these enzymes were deduced by analyzing the identities within the multiple alignment (Fig. 3, difference matrix) and within the paired alignment of hsEH with HAD1 (Fig. 2a). A cladogram depicting these relationships is shown (Fig. 4b).

DISCUSSION

The overall sequence identities of the sEHs are quite varied, from 30% to 92% (Table 2). However, analysis with BLAST and FASTA strongly supports the hypothesis that these enzymes are homologous. Biochemical characteristics of the recombinant enzymes, such as similar activities and inhibition by sEH-selective compounds, provide biological support of common ancestry (see sEH references in Table 1). Similarly, the homology of the amino terminus of mammalian sEH to HAD1 and the carboxy terminus of mammalian sEH to plant sEH and microsomal EH and HLD1 is supported by sequence identity, conservation of catalytic residues, and similar enzymatic activity (hydrolysis of substrates without cofactors).

The sequence data do not support the existence of an evolutionary relationship between LTA₄H and the sEHs, mEHs, or dehalogenases (Table 2). Furthermore, the enzymatic activity of LTA₄H requires a metal cofactor whereas the sEHs, mEHs, and dehalogenases described here do not. These data suggest that at least two types of unrelated epoxide hydrolases have evolved from separate ancestral genes.

HAD1 and HLD1 share no significant sequence identity that would indicate homology between these dehalogenases (Table 2). The orthologs of these two enzymes can be found together in bacteria such as Xanthobacter autotrophicus allowing the dehalogenation of 1,2-dihalogenated alkanes (Ploeg et al., 1991). This observation suggests the mammalian sEH is the result of a fusion between the genes ancestral to HAD1 and HLD1. With this assumption, a scheme of

Table 2. Matrix of Percent Identities and FASTA Scores

<table>
<thead>
<tr>
<th>PERCENT IDENTITY</th>
<th>soluble EH</th>
<th>microsomal EH</th>
<th>LT A₄H</th>
</tr>
</thead>
<tbody>
<tr>
<td>(length)</td>
<td>hsEH</td>
<td>mEH</td>
<td>mEH</td>
</tr>
<tr>
<td></td>
<td>rEH</td>
<td>rEH</td>
<td>rEH</td>
</tr>
<tr>
<td>1 (554)</td>
<td>73</td>
<td>72</td>
<td>37</td>
</tr>
<tr>
<td>2 (554)</td>
<td>2276</td>
<td>92</td>
<td>34</td>
</tr>
<tr>
<td>3 (554)</td>
<td>3592</td>
<td>2674</td>
<td>34</td>
</tr>
<tr>
<td>4 (323)</td>
<td>404</td>
<td>403</td>
<td>434</td>
</tr>
<tr>
<td>5 (321)</td>
<td>445</td>
<td>443</td>
<td>422</td>
</tr>
<tr>
<td>6 (459)</td>
<td>95</td>
<td>72</td>
<td>86</td>
</tr>
<tr>
<td>7 (455)</td>
<td>78</td>
<td>79</td>
<td>41</td>
</tr>
<tr>
<td>8 (455)</td>
<td>82</td>
<td>79</td>
<td>81</td>
</tr>
<tr>
<td>9 (227)</td>
<td>103</td>
<td>103</td>
<td>105</td>
</tr>
<tr>
<td>10 (310)</td>
<td>201</td>
<td>218</td>
<td>190</td>
</tr>
<tr>
<td>11 (611)</td>
<td>38</td>
<td>30</td>
<td>46</td>
</tr>
</tbody>
</table>

Optimized FASTA score

Percent identities were determined by comparing protein sequence pairs utilizing GAP. Identities were also equivalent to values calculated by BESTFIT.
Amino-terminal analysis

The homology between the amino terminus of mammalian sEH and HAD1 is intriguing and may indicate that mammalian sEH contains two catalytic domains. As noted earlier, although the plant lacks the mammalian sEH amino-terminal region, the mammalian and plant sEH share characteristics of activities and inhibition. What (if any) is the function of the amino terminus of mammalian sEH? It has been suggested without experimental support that the mammalian amino-terminal region functions to allow dimerization of the sEH (Knehr et al., 1993); the native mammalian sEHs studied exist as homodimers. The homology to HAD1 suggests that at least a part of the amino-terminal region may possess a function or catalytic activity analogous to the corresponding region of HAD1.

Although no catalytic mechanism has yet been established for the holoacid dehalogenases, the subclass of dehalogenases to which HAD1 belongs is characterized in part by an insensitivity to thiol-modifying reagents. Furthermore, site-directed mutation of HAD1 and the closely related HAD5 (both are members of the same subclass of holoacid dehalogenases that convert L-2-chloropropionate to D-lactate, but do not convert D-2-chloropropionate) identified residues critical to activity. Substitution in HAD1 of Asp10 to Ala10 resulted in complete loss of activity (Schneider et al., 1993).
Table 3. Statistical Significance (P and Z Values) of Protein Similarity Scores

<table>
<thead>
<tr>
<th>Query</th>
<th>Target</th>
<th>Blast Results</th>
<th>Residues Aligned</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsEH</td>
<td>HAD1</td>
<td>hsEH residue 148–204, 30% identity, 79</td>
<td>P-value 0.01, Score 112–229, 107–219, 28% identity, 10.5</td>
</tr>
<tr>
<td>hsEH</td>
<td>HLD1</td>
<td>hsEH residue 112–124, 61% identity, 45</td>
<td>P-value 0.7, Score 246–402, 32–193, 25% identity, 21.4</td>
</tr>
<tr>
<td>hsEH</td>
<td>rmEH</td>
<td>hsEH residue 264–358, 31% identity, 146</td>
<td>P-value 3.9e-12, Score 211–382, 99–274, 23% identity, 6.0</td>
</tr>
<tr>
<td>HLD1</td>
<td>rmEH</td>
<td>HLD1 residues 15–144, 110–246</td>
<td>P-value 23%, Score 15–144, 110–246, 23% identity, 5.8</td>
</tr>
</tbody>
</table>

Protein and DNA databases were searched using the BLAST program with query sequences consisting of hsEH residues 1–264 or 252–554, and using the FASTA program with query sequences consisting of hsEH residues 1–230 or 190–554. The BLAST results include what appears to be an insignificant alignment (P = 0.7). Unlike FASTA, BLAST does not allow gaps in constructing an alignment but will report low scoring sequence pairs when a comparison also results in the report of a proximal and significantly high scoring sequence pair. The highest scoring dehalogenase target sequence for each FASTA search, and the sequence of rmEH, were compared against the appropriate sEH query segment for statistical significance (Z) utilizing FASTA RDF-2. The FASTA RDF-2 comparison of HLD1 to HAD1 and rmEH utilized the entire sequence of the proteins. The λ and κ values for the BLAST searches were 0.322 nats/unit and 0.137 for the carbonyl-terminal search, and 0.322 nats/unit and 0.139 for the amino-terminal search. P, Probability; SD, standard deviation units.

Asp-10 is conserved in HAD1 through HAD6 and in mammalian sEH as well. Similarly, residues Arg-42 and His-20 are critical to the activity of HAD5 (Murphy et al., 1992). Arg-42 is conserved in the HADs we examined (Arg-41 in HAD1; Fig. 2a) and in the mammalian sEHs corresponds to a conserved Lys. However, His-20 is not conserved in all HADs examined (Asn-19 in HAD1, and Gln in HAD2) or in sEH (note though the retention of charge in HAD1 and HAD2). The region of greatest identity between the HADs and sEHs corresponds to hsEH residues 112–229, but no function has yet been ascribed to the corresponding region of the HAD’s.

Carboxy-terminal analysis

HLD1 is a member of the α/β hydroxylase fold enzyme family, a group of evolutionarily related enzymes that include other hydroxylases such as acetylcholine esterase, lipases, and carboxypeptidase II (Ollis et al., 1992). The α/β fold enzymes have a two-domain organization. Domain I consists of an α/β sheet that forms a catalytic pocket containing the nucleophile–acid–His catalytic triad and is structurally continuous. However, in terms of linear protein sequence, Domain I is split by Domain II. Domain II in HLD1 sits like a lid over the catalytic cleft (Franken et al., 1991) positioning residues critical to substrate binding and specificity (Ollis et al., 1992). Much of the structural variance between α/β enzymes occurs in Domain II and is evidenced by the varied lengths of Domain II sequences (Ollis et al., 1992).

Domain I of HLD1 spans residues 20–155 and 230–310, and Domain II spans 156–229 (Franken et al., 1991). By the alignment of hsEH and HLD1 (Fig. 2b), the equivalent residues of hsEH Domain I are 230–365 and 473–545, and for Domain II are 366–472 (Fig. 2b, “L”). Alignment of all sEH with all mEH and HLD1 indicates the deduced Domain I of mEH spans residues 112–245 and 374–452, Domain II spans residues 256–373 (shown in part in Fig. 3a).

Establishing the deduced domains of the sEH and mEH may be important both for predicting catalytic residues and noncatalytic residues that interact with substrate. For example, if residues critical to substrate binding are to be found in Domain II of the sEHs as they are in other α/β enzymes, a conserved basic residue might function in stabilizing or positioning the acid moiety of acidic substrates. Long-chain fatty acids are excellent substrates for the mammalian sEHs. There are three basic residues conserved in all sEHs that could serve this stabilizing function: Arg-466, Lys-406, and Lys-375 (which is Arg in some sEHs). Preliminary experiments in one author’s laboratory (Hammock) indicate that chemical modification of Lys-406 inactivates the enzyme.

The homology of the carboxyl terminus of sEH to HLD1, especially the shared identity with the catalytic residues of HLD1, is important for predicting a catalytic mechanism for the sEH. The mechanism for the HLD1 was established by X-ray crystallographic analysis of a HLD1-substrate intermediate (Verschueren et al., 1993). The HLD1 mechanism involves the nucleophilic attack of Asp-123 on the halogen-substituted terminal carbon of the substrate, forming a covalently bound ester intermediate. The His-289–Asp-260 pair activate a water molecule that hydrolyzes the ester intermediate to release the product. By analogy, the alignment of hsEH with HLD1 suggests that hsEH Asp-334 is the nucleophile that attacks the epoxide-carbon of the substrate, and Asp-495–His-523 are the water-activating pair. This mechanism has recently been suggested for the mammalian sEH and mEH (Arand et al., 1994; Lacourciere and Armstrong, 1994) and recent data provide experimental support for this hypothesis (Lacourciere and Armstrong, 1993; Hammock et al., 1994).

The multiple alignments between plant and animal sEH, mEH, and HLD1 presented here support a predicted mechanism for the sEHs analogous to that of HLD1. The alignment suggests that the catalytic residues of mEH are the nucleophile Asp-226 and the water-activating pair Glu-404–His-431 (Fig. 3a). While the assignment of acidic water-activa-
FIG. 2. Alignment of hSEH with two dehalogenases Regions aligned by FASTA or BLASTP analysis are bounded by "[]" and "[]", respectively. The alignment shown of regions outside these boundaries may not be valid. Identities and similarities are denoted by "[]" and "[]". Alignment utilized GAP and is equivalent to that produced with BESTFIT. Gaps are denoted by "[]". a. Alignment of hSEH amino-terminal region to HAD. Bold residues of hSEH are conserved with sEH of rat and mouse. Bold residues in HAD1 are conserved with five other haloalcohol dehalogenases (HAD2-6). b. Alignment of hSEH carboxy-terminal region to HLD1. Bold residues of hSEH are conserved with sEH of rat, mouse, arabidopsis, and potato. The catalytic residues of HLD1 are denoted by "*". Domain 1 and II boundaries of HLD1 are denoted by "[]" and "[]". The consensus nucleophilic region of HLD1 (small, X, nucleophile, X, small, small) is denoted by "*".

Finally, the domain organization of the α/β enzymes also supports catalytic assignment to Glu-404 rather than Asp-352. In superimposing the domains of HLD1 upon the sEH and mEH, Glu-404 is in Domain I while Asp-352 is in Domain II; all catalytic residues of α/β enzyme family members are within Domain I. We can attempt to reposition Asp-352 by extending mEH Domain I to include this residue. In so doing, the total residues of Domain I increase from 217 to 239. This length is as compared to a Domain I length of 209 in mammalian sEH, 213 in plant sEH, and 217 in HLD1. However, the major difference between sequence lengths of α/β enzymes is due to variance of lengths in Domain II, not.
FIG. 3. Multiple alignment and difference matrix of soluble and microsomal epoxide hydrolases and HLD1. a. Complete sequences were aligned by PILEUP and the region corresponding to HLD1 Domain I (excepting the 34 most amino-terminal residues) is shown. As noted in text, the linear sequence of Domain I is interrupted by Domain II; this is indicated by "I". Gaps are denoted by "-". Identities among all sequences are indicated by "I". Conserved similar residues (D = E; K = R = H; Q = N; F = W) are denoted by "*". Catalytic (and deduced catalytic) residues are in large, bold print. Positions in the alignment at which there were gaps in any of the sequences were omitted in calculating the difference matrix and cladogram. b: Difference matrix from the alignment of a. Residues not considered in the matrix are as noted in a.

domain I. A mEH Domain I length of 217 residues is closer to that of the seH's and HLD1 than is a length of 239.

Another region showing high conservation of residues between mEH, seH, and HLD1 is within Domain I at hseH residues 264–277. In HLD1 and other α/β enzymes this structurally conserved region is putatively involved in forming an oxyanion hole that stabilizes an enzyme–substrate tetrahedral intermediate (Ollis et al., 1992; Verschueren et al., 1993). In the sEHs and mEHs, it may function similarly as well as functioning to polarize the epoxide in a push pull mechanism of initial attack of Asp-334. In this model, the helix dipole occurring within the conserved region (hseH residues 264–277) is positioned near the catalytic pocket, stabilizing a tetrahedral anion-intermediate consisting of the enzyme covalently linked to an oxyanion substrate-intermediate. Such an oxyanion is a possible early
FIG. 4. Relatedness of the soluble and microsomal epoxide hydrolases and the dehalogenases. a. The linear sequence of mammalian sEH (~554 residues) is aligned with other epoxide hydrolases and dehalogenases. Solid lines represent regions of proposed homologies between the proteins. The dashed line for the amino terminus of microsomal EH indicates there is no homology of this region to the other proteins represented. b. Cladogram depicting one possible scheme of the evolutionary relatedness of these enzymes. The open triangle indicates a gene fusion, the open square a gene duplication. The dashed line and box denoting the plant mEH represents our speculation that the ortholog of the mammalian mEH will be found in plant, a discovery that would further support the placement of the duplication event prior to the plant and mammal sEH split. Indeed, a plant-like enzyme with mammalian mEH-like biochemical properties has been reported (Pinot et al., 1992).

intermediate formed as the enzyme reacts with the substrate (Fig. 5). Additionally, the conserved region may form a hydrogen bond to the ester carbonyl of the tetrahedral intermediate, as is indicated to occur with HLD1 (Verschueren et al., 1993).

FIG. 5. Putative oxyanion intermediate. Possible catalytic scheme of the soluble and microsomal epoxide hydrolases depicting an oxyanion intermediate that may be stabilized by an oxyanion hole formed by the enzyme.
are described (eight soluble and microsomal EHs from six eukaryote species) is adequate to establish the framework of an open-ended nomenclature system for these enzymes.

Historically, the EHs have been named by species of origin, substrate, and/or characteristics of fractionation. Although these characteristics are important to understanding enzyme function, they cannot be used to directly infer evolutionary relatedness between enzymes and may be ambiguous when used for nomenclature. Substrates may vary for orthologous proteins. Characteristics of fractionation may also vary; the sEH of mammals was named for its predominant fractionation to the 100,000 × g supernatant, but the sEH of rodent is in peroxisomal, cytosolic, and (in trace amounts) microsomal fractions. A molecular classification system for epoxide hydrolases would be less arbitrary than the historical ad hoc naming system, and may be much more consistent.

What we propose is a superfamily designated by the root name "HYL" and consisting of all enzymes that are evolutionarily related to the α/β hydrolase fold family. Division of the superfamily into families, subfamilies and genes would be by protein sequence identities. The families would be designated by an Arabic number; any member of one family would have less than 40% identity to any member of another family. The HYL group would contain many families, and each family would divide into subfamilies for any given gene, the mammalian sEH, and the plant sEH. Each family would divide into subfamilies for homologous genes.

We suggest the gene, transcript, cDNA, and enzyme all utilize the same name. The gene and its cDNA would be italicized, e.g., HYL2a [HyL2a.1 for mouse]. The mRNA or protein would be written without italics, e.g., HYL2a for mouse or any other species.

If there is no evidence of multiple subfamilies or genes within a family, no subfamily or gene designation need be specified. In the case of the present α/β-related EHs there are no subfamilies yet identified. If several authors wish to adopt this system but utilize trivial names within a text, they could reference the trivial names to the "formal names".

Based on the difference matrix of Fig. 3b we can establish the molecular nomenclature names for the EHs. A summary of the family/subfamily boundaries and classification tree for these EHs is given in Fig. 6. As shown, the mEHs would be family HYL1, mammalian sEH HYL2, and plant sEH HYL3.

The nomenclature system described here for those epoxide hydrolases that are related to the α/β hydrolases is similar to the nomenclature systems for the P450s, the glutathione transferases, and the UDP glucuronosyltransferases noted earlier. We are suggesting that percent identity serves as a reasonable and measurable characteristic that can reflect both evolutionary and functional aspects of a protein. An important objective of this nomenclature system is that it should agree with the biological data. Thus, percent identity should be considered a guideline to naming, not an absolute, inflexible criterion. If data exist that argue for a protein being grouped other than where percent identity would indicate, then the data should be considered in whole. For example, we have proposed 40% identity as the minimum identity between family members. The mammalian sEHs are also characterized as deriving from a gene fusion event. In the possible event that a protein encoded by a fused gene homologous to the mammalian sEHs is described that does not share at least 40% identity to mammalian sEHs, perhaps the hypothetical protein should be included in the sEH HYL2 family. With this in mind, while this system may be utilized immediately, it can also be considered a framework to a finalized system to be produced by a nomenclature committee that should be formed and meet on some regular basis.

ACKNOWLEDGMENTS

This publication was supported in part by grants ES02710 from the National Institutes of Health (NIH), U.S. EPA (R819658) Center for Ecological Health Research at the University of California at Davis, SFB 302 from the German Research Council, 91-37302-6183 from the U.S. Department of Agriculture, ES05707 from NIH Center for Environmental Health Research/National Institutes of Health (NIH), and by special coordination funds from the Science and Technology Agency (STA) of Japan. J.K.B. was supported in part by NIH Biotechnology Training Grant GM08343 and T.K. by an STA fellowship.

REFERENCES

superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature.
DNA Cell Biol. 12, 1–51.

Address reprint requests to:
Dr. Bruce D. Hammock
Depts. of Entomology and Environmental Toxicology
University of California
363 Briggs Hall
Davis, CA 95616

Received for publication May 3, 1994; accepted August 16, 1994.