UZH-Logo

Maintenance Infos

Wetting of water on hexagonal boron nitride@Rh(111): a QM/MM model based on atomic charges derived for nano-structured substrates


Golze, Dorothea; Hutter, Jürg; Iannuzzi, Marcella (2015). Wetting of water on hexagonal boron nitride@Rh(111): a QM/MM model based on atomic charges derived for nano-structured substrates. Physical Chemistry Chemical Physics (PCCP), 17(22):14307-14316.

Abstract

The wetting of water on corrugated and flat hexagonal boron nitride (h-BN) monolayers on Rh(111) is studied within a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. Water is treated by QM methods, whereas the interactions between liquid and substrate are described at the MM level. The electrostatic properties of the substrate are reproduced by assigning specifically generated partial charges to each MM atom. We propose a method to determine restrained electrostatic potential (RESP) charges that can be applied to periodic systems. Our approach is based on the Gaussian and plane waves algorithm and allows an easy tuning of charges for nano-structured substrates. We have successfully applied it to reproduce the electrostatic potential of the corrugated and flat h-BN/Rh(111) known as nanomesh. Molecular dynamics simulations of water films in contact with these substrates are performed and structural and dynamic properties of the interfaces are analyzed. Based on this analysis and on the interaction energies between water film and substrate, we found that the corrugated nanomesh is slightly more hydrophilic. On a macroscopic scale, we expect a smaller contact angle for a droplet on the corrugated surface.

Abstract

The wetting of water on corrugated and flat hexagonal boron nitride (h-BN) monolayers on Rh(111) is studied within a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. Water is treated by QM methods, whereas the interactions between liquid and substrate are described at the MM level. The electrostatic properties of the substrate are reproduced by assigning specifically generated partial charges to each MM atom. We propose a method to determine restrained electrostatic potential (RESP) charges that can be applied to periodic systems. Our approach is based on the Gaussian and plane waves algorithm and allows an easy tuning of charges for nano-structured substrates. We have successfully applied it to reproduce the electrostatic potential of the corrugated and flat h-BN/Rh(111) known as nanomesh. Molecular dynamics simulations of water films in contact with these substrates are performed and structural and dynamic properties of the interfaces are analyzed. Based on this analysis and on the interaction energies between water film and substrate, we found that the corrugated nanomesh is slightly more hydrophilic. On a macroscopic scale, we expect a smaller contact angle for a droplet on the corrugated surface.

Citations

4 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 21 Dec 2015
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2015
Deposited On:21 Dec 2015 14:07
Last Modified:05 Apr 2016 19:30
Publisher:RSC Publishing
ISSN:1463-9076
Publisher DOI:https://doi.org/10.1039/c4cp04638b
PubMed ID:25430062

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 6MB
View at publisher
[img]
Content: Supplemental Material
Filetype: PDF - Registered users only
Size: 612kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations