Management of diffusely infiltrating glioma in the elderly

Wirsching, H G; Happold, C; Roth, P; Weller, M

Abstract: PURPOSE OF REVIEW Genetic, epigenetic, and expression analyses have refined the traditional, histopathology-based classification of diffusely infiltrating gliomas. This review summarizes these trends and implications for elderly patients. RECENT FINDINGS The vast majority of diffusely infiltrating gliomas in elderly patients share an unfavorable molecular phenotype, that is, telomerase reverse transcriptase promoter mutation in the absence of isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion. Histopathologically, these are mostly astrocytic tumors and treatment is guided by the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter. 1p/19q codeletion indicates oligodendroglial histology and benefit from the addition of procarbazine, chloroethyl-cyclohexyl-nitroso-urea/lomustine, and vincristine polychemotherapy to radiotherapy. These tumors are almost exclusively associated with IDH mutations, but their molecular profile is rare in elderly patients. Two large phase III trials, RTOG 0825 and AVAglio, failed to demonstrate an overall survival benefit from antiangiogenic therapy with bevacizumab added to combined chemoradiotherapy (TMZ) in patients with newly diagnosed glioblastoma, but a trend toward improved survival with increasing age can be noted. Ongoing clinical trials in elderly patients with diffusely infiltrating glioma will clarify the role of combined chemoradiotherapy, and of bevacizumab or other antiangiogenic agents as an adjunct to radiotherapy. SUMMARY The choice of first-line therapy in elderly patients with diffusely infiltrating glioma is between postoperative hypofractionated radiotherapy and chemotherapy, guided by MGMT methylation in most patients.

DOI: https://doi.org/10.1097/CCO.0000000000000236
Management of diffusely infiltrating glioma in the elderly

Hans-Georg Wirsching¹, Caroline Happold¹, Patrick Roth¹, Michael Weller¹,*

¹ Department of Neurology & Brain Tumor Center, University Hospital Zurich & University of Zurich, Frauenklinikstrasse 26, CH-8091, Zurich, Switzerland

* corresponding author: Prof. Dr. Michael Weller, Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland, phone: + 41 44 255 5500, Fax 41 44 255 4507, E-Mail michael.weller@usz.ch
Abstract

Purpose of review:

Genetic, epigenetic and expression analyses have refined the traditional, histopathology based classification of diffusely infiltrating gliomas. This review summarizes these trends and implications for elderly patients.

Recent findings:

The vast majority of diffusely infiltrating gliomas in elderly patients share an unfavorable molecular phenotype, i.e. TERT promoter mutation in the absence of IDH mutation and 1p/19q co-deletion. Histopathologically, these are mostly astrocytic tumors and treatment is guided by the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter. 1p/19q co-deletion indicates oligodendroglial histology and benefit from the addition of PCV (procarbazine, CCNU/lomustine, vincristine) polychemotherapy to radiotherapy. These tumors are almost exclusively associated with IDH mutations, but their molecular profile is rare in elderly patients. Two large phase III trials, RTOG 0825 and AVAGlio, failed to demonstrate an overall survival benefit from anti-angiogenic therapy with bevacizumab added to combined chemoradiotherapy in patients with newly diagnosed glioblastoma, but a trend towards improved survival with increasing age can be noted. Ongoing clinical trials in elderly patients with diffusely infiltrating glioma will clarify the role of combined chemoradiotherapy, and of bevacizumab or other anti-angiogenic agents as an adjunct to radiotherapy.
Summary:

The choice of firstline therapy in elderly patients with diffusely infiltrating glioma is between post-operative hypofractionated radiotherapy and/or chemotherapy, guided by $MGMT$ methylation in most patients.

Keywords: IDH, MGMT, elderly, glioma
Introduction

The current diagnosis of gliomas is based on histopathologic features according to the World Health Organisation (WHO) classification of primary brain tumors\(^1\). Diffusely infiltrating gliomas are assigned to WHO grades II-IV and further classified based on their lineage differentiation as astrocytic or oligodendroglial. Assignment of WHO grade IV is confined to glioblastoma and its variants, which are characterized by mostly astrocytic differentiation, microvascular proliferation and necrosis\(^1\). In elderly patients aged 65 years or older, glioblastoma (WHO grade IV) accounts for 83.8% of new diagnoses of diffusely infiltrating gliomas, followed by diffuse astrocytoma (7.5%, WHO grade II) and anaplastic astrocytoma (5.8%, WHO grade III)\(^2\). However, the prognostic significance of histopathological classification is limited in the elderly population. Among patients aged 65-74 years, 1-year survival rates are 36.9% (95% CI: 33.1-40.6) for diffuse astrocytoma, 33.2% (95% CI: 29.0-37.3) for anaplastic astrocytoma and 25.3% (95% CI: 24.3-26.3) for glioblastoma\(^2\). Consequently, watchful waiting strategies advocated for WHO grade II tumors in younger patients are not feasible in the elderly population\(^3,4\).

Recently, progress in the molecular characterization of gliomas led to the identification of a panel of prognostic markers and a novel classification of prognostic entities based on the occurrence of isocitrate dehydrogenase (*IDH*) 1 or 2 mutations, co-deletions of chromosome arms 1p/19q, and mutations in the promoter region of the gene encoding telomerase reverse transcriptase (*TERT*) \(^5-7\): (i) co-occurrence of mutant *IDH* and 1p/19q co-deletions is usually
accompanied by TERT promoter mutations5-7 and almost exclusively confined
to WHO grade II/III tumors with oligodendroglial histology8,9. These tumors
are associated with the most favorable prognosis5,10-12, (ii) IDH mutant, 1p/19q
non-co-deleted tumors do not usually have TERT mutations5-7 and are
characterized by tumor suppressor gene TP53 mutations, often accompanied by
mutations in the alpha thalassemia/mental retardation syndrome X-linked
(\textit{ATRX}) gene8,9. Histologically, these are mostly astrocytic tumors8,9 and the
prognosis is intermediate5,10-12. (iii) IDH wild-type tumors are mostly
astrocytic tumors with mutant TERT and lack 1p/19q co-deletions6,7. IDH
wild-type tumors are associated with poor prognosis and comprise the majority
of elderly patients with diffusely infiltrating glioma13. Integrated analyses of
genetic, epigenetic, gene expression and microRNA expression data
complement evidence that diffuse gliomas in the elderly are genetically distinct
from gliomas in younger patients5,13-15. However, these advances in classifying
gliomas have not yet been integrated in population-based epidemiological
studies.

The incidence of astrocytic diffusely infiltrating gliomas increases with age,
whereas oligodendroglial tumors are rare in elderly patients (Table 1)2.
Considering the constantly increasing life expectancy in most societies around
the world, the number of elderly patients with diffusely infiltrating glioma will
grow. Yet, only few randomized clinical trials in elderly patients have been
completed16-19. The particular paucity of data available to guide the treatment
of elderly patients with WHO grade II gliomas as well as the comparable
prognosis and molecular similarities with WHO grade III/IV tumors may justify analogous treatment in most cases (Figure 1).

Concerns to enroll elderly patients with diffuse glioma into clinical trials include higher morbidity, reduced treatment tolerability and impairment of quality of life due to toxicity. However, evidence from several trials demonstrated that treatment of elderly patients with glioblastoma yielded stable or improved quality of life until progression16, 17, 20. Treatment modalities for diffusely infiltrating glioma comprise the classical triad of cancer therapeutics, i.e. surgery, radiotherapy and chemotherapy, but further individualizing treatments by targeting the molecular mechanisms that drive the malignant phenotype in elderly patients will ultimately improve outcome.

Biopsy or Surgery?

Microsurgical resection or diagnostic biopsy is required for establishing the histopathologic diagnosis and should precede any further treatment. The therapeutic value of microsurgical resection is under debate, because sufficiently powered randomized trials in the elderly are lacking. While retrospective studies suggest that maximum safe resection improves survival compared to biopsy in patients with WHO grade II gliomas3, 21, 22, elderly patients are generally underrepresented in these cohorts. However, accumulating evidence suggests that maximum safe resection improves survival in elderly patients with WHO grade III/IV gliomas: Among 372
patients >65 years that were treated for anaplastic astrocytoma or glioblastoma within the NOA-08 trial, extent of resection was an independent prognostic factor in a pre-specified survival model that controlled for age, O⁶-methylguanine-DNA methyltransferase (MGMT) promoter methylation, study treatment and histology¹⁸. In a case-control study including 80 patients over 65 years that were matched for age, KPS, tumor location and adjuvant therapies, an overall survival benefit for surgery versus biopsy (5.7 vs 4.0 months, p=0.02) was apparent²³. These results are further supported by a retrospective study in 142 patients with newly diagnosed glioblastoma aged >65 years, among which resection versus biopsy was associated with prolonged survival (13.0 vs 4.0 months, p<0.001)²⁴. Finally, biopsy versus surgical resection was associated with inferior overall survival (HR 1.50 [95% CI 1.17-1.92]) in multivariate analyses of the Nordic trial (N=342), which compared two different radiotherapy regimens and temozolomide in patients with newly diagnosed glioblastoma aged >60 years¹⁹. In contrast, one retrospective single center cohort study of 58 patients aged >80 failed to demonstrate prolonged survival of a sub-group of 12 patients that underwent gross total resection, as compared to incomplete resection or biopsy²⁵, but the small sample size of this cohort longs for further evaluation of the value of extent of resection in this particularly old subgroup of patients.

Radiotherapy or chemotherapy – or both?
The European Organisation for Research and Treatment of Cancer (EORTC) 22981/26981 / National Cancer Institute of Canada (NCIC) CE.3 trial has defined combined chemoradiotherapy to $30 \times 2 = 60$ Gray (Gy) with daily concomitant TMZ at 75mg/m^2 followed by 6 cycles of TMZ at 150-200 mg/m2 on 5/28 days as the standard of care for glioblastoma26,27. Combined chemoradiotherapy prolonged median overall survival by 2.4 months compared to radiotherapy alone (HR 0.63, 95% CI 0.52-0.75, P<0.001)26. However, the trial did not enroll patients older than 70 years and post-hoc analyses suggested decreased efficacy of the addition of TMZ to RT in patients aged 66-70 years (HR 0.78, 95% CI 0.50-1.25, p=0.29)28, but the trial was not powered for age stratified efficacy analyses. The efficacy of combined chemoradiotherapy versus radiotherapy alone in elderly patients aged over 65 years with newly diagnosed glioblastoma and good clinical performance is currently being evaluated by an international NCIC/EORTC phase III trial (NCT00482677).

Radiotherapy

The efficacy of post-surgical radiotherapy (RT) in elderly patients with glioblastoma or anaplastic astrocytoma was demonstrated by a randomized trial of the Association des Neuro-Oncologues d’Expression Francaise (ANOCEF)16. A total of 81 patients aged 70 years or older with a KPS of at least 70% were randomized to receive best supportive care (BSC) with RT of contrast-enhancing tumor and a 2 cm margin to 50 Gy in fractions of 1.8 Gy, or
BSC alone. RT prolonged survival approximately two fold without major impact on quality of life or mental status16. A population-based retrospective review of 2836 elderly patients with glioblastoma (median aged 76.9 years [range 71-98]) demonstrated a survival benefit from RT too, after adjusting for tumor size, tumor location, surgery and demographics (HR 0.43, 95% CI 0.38-0.49)29.

Standard RT for glioblastoma is 54–60 Gy given in 1.8–2 Gy fractions27 and thus requires daily traveling during 6 weeks, which may be a particular burden for elderly patients with eminent morbidity. In a randomized trial in patients with glioblastoma aged 60 years or older (N=95), standard RT of 30 x 2 = 60 Gy (mean age 72.4 years) versus hypofractionated RT of 15 x 2.66 = 40 Gy (mean age 71.0 years) yielded similar median survival from the time of diagnosis (6.1 versus 5.9 months, HR 0.90 [95% CI 0.60-1.35], p=0.61)17.

These results were complemented by subgroup analyses of the phase III Nordic trial, which randomised 291 elderly patients (>60 years) with glioblastoma to three different treatment arms, including TMZ dosed to 150-200 mg/m2 on 5/28 days, standard RT of 30 x 2 = 60 Gy and hypofractionated RT of 10 x 3.4 = 34 Gy19. Comparing hypofractionated RT and standard RT within the intention to treat (ITT) population among the subgroup of patients aged 70 years or older (N=81), hypofractionated RT improved overall survival versus standard RT (7.0 vs 5.2 months, p=0.02), presumably in part because a substantial fraction of patients did not complete the entire course of standard RT19. These trials were not powered to demonstrate the efficacy of both RT
regimens, but, for pragmatic reasons, hypofractionated RT has become the preferred regimen for elderly patients and patients in poor general condition, across WHO grades27. Of note, accelerated and lower dose RT is also an option for the therapy of patients with WHO grade II gliomas30, but no data particularly evaluating its role in elderly patients are available.

Temozolomide

Among the ITT population of the Nordic trial (N=291), TMZ (N=93) was as efficient as hypofractionated RT (N=98) (HR 0.82 [96% CI 0.63–1.06]) in a survival model that controlled for age, type of surgery (biopsy versus resection) and WHO performance score19. In parallel, the German NOA-08 trial evaluated TMZ as an alternative to RT in elderly patients with glioblastoma (89\%) or anaplastic astrocytoma (11\%). The NOA-08 trial enrolled 412 of 584 screened patients aged 65 years or older with a KPS over 60\%, of which 373 patients received at least one dose of treatment to be included in efficacy analyses18. RT was administered to 30 x 2 = 60 Gy and TMZ was administered at a dose-dense schedule of 100 mg/m2 given on days 1–7 every other week (1 week on/1 week off). In a survival model that controlled for age, histological diagnosis, extent of resection and _MGMT_ promoter methylation, the effect of dose-dense TMZ on overall survival was non-inferior to standard RT (HR 1.09 [95% CI 0.84–1.42]) and overall survival rates after 12 months were 34.4\% (95% CI 27.6–41.4) in the TMZ group and 37.4\% (95% CI 30.1–44.7) in the
RT group18. The comparable results from the Nordic and NOA-08 trials with two different TMZ dosing regimens have yielded standard 5/28 the preferred dosing regimen in elderly patients27,, because no additional benefit was noted from dose-intensified TMZ in patients with anaplastic astrocytoma and glioblastoma, while toxicity was enhanced18, 31.

In patients aged 70 years or younger, benefit from TMZ was mainly restricted to patients with hypermethylation of the promoter region of $M G M T$32. To evaluate whether this accounts for elderly patients, too, survival analyses stratified for $M G M T$ methylation status were included in the Nordic and NOA-08 trials18, 19. In both trials $M G M T$ methylation predicted benefit from TMZ, and a trend towards inferior survival with TMZ among unmethylated patients was noted (Table 2).

In a retrospective analysis of pooled data from patients assessed within the NOA-04 and NOA-08 trials, and the German Glioma Network, $I D H$ mutation assessment refined the predictive role of $M G M T$ promoter methylation status for benefit from TMZ in patients with anaplastic gliomas33. Further, long-term follow-up data of two phase III trials in patients with anaplastic oligodendroglial gliomas (EORTC 26951 and RTOG 9402) defined 1p/19q co-deletion as a strong predictor for benefit from polychemotherapy with procarbazine, lomustine (CCNU) and vincristine (PCV)10, 11. Yet, assessment of $I D H$ mutation status or 1p/19q deletions in elderly patients is not part of clinical routine, because both these markers are rare in elderly patients with diffusely infiltrating gliomas27 and because toxicity from PCV likely limits its
utility in elderly patients. Further, TMZ and PCV were similarly active in patients with anaplastic gliomas treated in the NOA-04 trial12, and therefore, TMZ is advocated as a less toxic alternative to PCV in elderly patients, although a sufficiently powered clinical trial that directly compares PCV versus TMZ in diffusely infiltrating gliomas with 1p/19q co-deletion is lacking. In patients with WHO grade II gliomas, benefit from temozolomide is predicted by 1p/19q co-deletion34, mutant \textit{IDH}35, and methylated \textit{MGMT}36, but the role in elderly patients is elusive due to the low frequency of these tumors in patients aged over 65 years2. Of note, 1p/19q co-deletion and mutant \textit{IDH} were not prognostic in a cohort of mostly WHO grade II gliomas that were not treated with radio- or chemotherapy37, 38.

In summary, the Nordic and NOA-08 trials defined a predictive role of \textit{MGMT} promoter methylation for benefit from TMZ, but not RT, and have thereby defined \textit{MGMT} testing as standard of care in elderly patients with glioblastoma and anaplastic astrocytoma (Figure 1)27. The optimal combination of RT and TMZ for adults of any age with anaplastic gliomas that lack 1p/19q co-deletions is currently being evaluated by the EORTC trial CATNON (NCT00626990).

\textbf{Is anti-angiogenic treatment an alternative to chemo- or radiotherapy?}

Two independent placebo-controlled phase III trials (AVAglio and RTOG 0825) have demonstrated improved progression-free survival, but no overall
survival benefit from the addition of the humanized anti-vascular endothelial growth factor (VEGF) antibody bevacizumab (BEV) to standard combined chemoradiotherapy (RT/TMZ→TMZ 5/28) in patients with newly diagnosed glioblastoma. The RTOG-0825 trial randomized 637 patients with a median age of 58 years (range: 19-82) in mostly good general condition (KPS 90-100: N=378, 60.9%)39, 40. Among 921 patients randomized in the AVAglio trial, the median age was 57 years (range: 18-84), including 369 (40.1%) aged 60 years or older and 630 patients (68.7%) had a KPS of 90 or 100. On univariate analyses, a trend toward improvement of overall survival was noted with increasing age, though not reaching statistical significance (Table 3). Of note, the RTOG 0825 and AVAGlio trials were not powered to evaluate the age-stratified efficacy of BEV, but two early uncontrolled trials41, 42 and one retrospective study43 suggested increased benefit from BEV among elderly patients, too and this appeared to account particularly for patients with poor general condition42, 43. However, this population was likely underrepresented in the AVAGlio and RTOG-0825 trials, because good general condition (KPS>60) was an inclusion criterion in both trials39, 40. Currently, the randomized phase II Avastin plus radiotherapy in elderly patients with glioblastoma (ARTE) trial is exploring outcomes in patients aged 65 or older with newly diagnosed, \textit{MGMT} unmethylated glioblastoma treated with hypofractionated RT (15 x 2.66 = 40 Gy) with or without additional BEV (NCT01443676).
Therapeutic options at progression

To date, no controlled trials specifically evaluating treatment options for elderly patients with recurrent diffusely infiltrating glioma have been conducted. Treatment options include monotherapies or combined regimens containing temozolomide, nitrosoureas (in particular CCNU/lomustine) and bevacizumab, dependent on patient and tumor characteristics, pretreatment, availability and local preferences\(^{44}\). Based on uncontrolled trials, only patients in good general condition where gross total resection is safely feasible should be considered for repeat surgery\(^ {27}\) and repeat RT should only be considered in patients with KPS >60, small tumors and time of progression over 6 months from surgery when chemotherapy is contraindicated\(^ {45}\). However, patterns of progression and comorbidities mostly preclude repeat surgery and repeat RT as an option for elderly patients.

Treatment choice at recurrence is particularly challenging in the majority of elderly patients with MGMT unmethylated tumors that were pretreated with hypofractionated RT, because the efficacy of alkylating chemotherapy is very limited. The Dutch BELOB trial explored the efficacy of lomustine versus bevacizumab versus a combination of both in 153 patients with recurrent glioblastoma at a median age of 57 years\(^ {46}\). Although age-stratified survival analyses were not included in the publication, good treatment tolerability and favorable survival in the combination group versus bevacizumab mono-therapy versus lomustine mono-therapy (median post recurrence survival: 12 vs 8 vs 8 months) suggest that the combination of BEV and lomustine may be a valid
option for elderly patients with recurrent disease. Of note, no difference in overall survival was detected in MGMT stratified analyses of 43 patients treated with lomustine alone (HR unmethylated versus methylated: 0.89 [95% CI: 0.48-1.64]) and addition of lomustine to BEV in patients with unmethylated MGMT increased overall survival rates at 9 months from 12% (95% CI: 3-29) for BEV alone to 58% (95% CI: 37-74) for the combination of BEV and lomustine, thus suggesting some activity of lomustine in MGMT unmethylated glioblastoma. Whether lomustine is active in elderly patients, too, remains to be explored. Stratification by age <50 versus 50+ years demonstrated no difference in the efficacy of lomustine in a recent phase III trial for recurrent glioblastoma, which utilized lomustine as standard therapy in 92 patients yielding a 19% progression free survival rate at 6 months. However, median age or MGMT methylation status was not reported and a majority of included patients had a good KPS of 90-100%, thus limiting extrapolations on a frail elderly population.

Hypofractionated RT at recurrence is the treatment of choice for elderly patients with methylated MGMT promoter that received first line therapy with TMZ. TMZ re-challenge may also be considered after a TMZ-free interval in patients that responded to first line TMZ, i.e. essentially patients with MGMT methylated tumors. Standard dosing at 150-200 mg/m² on 5/28 days is preferred, since dose-intensified TMZ regimens are unlikely to be more active at rechallenge.

However, randomized trials evaluating treatment options for elderly patients
with recurring diffusely infiltrating glioma are required to define a standard of care.

Conclusion

Diffusely infiltrating gliomas in elderly patients differ molecularly from their histopathological counterparts in younger patients. Favorable molecular markers including mutant *IDH* and 1p/19q co-deletions are rare among elderly patients. Considering molecular similarities, poor prognosis and paucity of available data, we advocate to treat WHO grade II gliomas in elderly patients analogous to WHO grade III/IV gliomas if *IDH* wild-type status is confirmed. *MGMT* promoter methylation predicts benefit from TMZ and should therefore be determined in elderly patients with diffusely infiltrating glioma to guide first line treatment (Figure 1). Treatment options at recurrence are limited and generally lack evidence from randomized controlled trials. Future clinical trials focusing on the distinct molecular profile of diffusely infiltrating gliomas in the elderly should be conducted for both first and second line treatments.

- A novel prognostic classification of diffusely infiltrating gliomas has been suggested based on the presence of *IDH* mutation, chromosome 1p/19q co-deletion and *TERT* promoter mutations.
- Diffusely infiltrating gliomas in elderly patients are characterized by the
least favorable combination of these markers, i.e. TERT promoter mutation in the absence of IDH mutation and 1p/19q co-deletion.

- The mainstay of treatment in elderly patients is maximum safe resection followed by chemo- or radiotherapy.
- MGMT promoter hypermethylation predicts response to alkylating chemotherapy in patients with newly diagnosed as well as recurrent glioblastoma.
- There is a trend for benefit from anti-angiogenic treatment with bevacizumab with increasing age.

Acknowledgements

None.

Financial support and sponsorship

None.

Conflict of interest

HGW has received honoraria for advisory boards from Roche. PR has received honoraria for advisory boards and lectures from Roche, MSD, Novartis and Molecular Partners. MW has received research grants from Acceleron, Alpinia
Institute, Bayer, Isarna, MSD, Merck Serono, PIQUR and Roche and honoraria for lectures or advisory board participation from Celldex, Isarna, Magforce, MSD, Merck Serono, Pfizer, Roche and Teva. C. Happold is a consultant/advisory board member for MSD.

References

* This population-based study provides data on the epidemiology of diffusely infiltrating glioma

** This study defines a novel classification of diffusely infiltrating WHO grade II/III gliomas based on molecular marker profiles.

** This study includes glioblastoma to the molecular classification proposed in Ref. 5 and includes further molecular validation data.

** This study further validates the molecular classification proposed in Ref. 5 and extends the molecular characterisation of the defined molecular subgroups, complementing Ref. 6.

* Based on molecular marker profiles, this study defined oligodendroglial and astrocytic gliomas and questioned the requirement of oligoastrocytoma as a
separate entity.

22. Ius, T. et al. Low-grade glioma surgery in eloquent areas: volumetric

* This review article summarizes the current standard of care of WHO grade III and grade IV gliomas.

** This phase III trial in patients with newly diagnosed glioblastoma found a tendency to improved survival from the addition of bevacizumab to combined chemoradiotherapy.

* This phase II trial demonstrated good tolerability and suggested synergism of a combination of bevacizumab and lomustine in recurrent glioblastoma (no age stratified analyses reported).

* This phase II trial defined the prognostic value of MGMT promoter methylation for response to temozolomide in recurrent glioblastoma.

Figure legend

Figure 1. Therapeutic approach to diffusely infiltrating gliomas in elderly patients. MGMT, O6-methylguanine-DNA methyltransferase; IDH, isocitrate dehydrogenase; TMZ, temozolomide; RT, radiotherapy. TMZ/RT, 30 x 2 = 60 Gray (Gy) with daily concomitant temozolomide at 75 mg/m²; PCV, polychemotherapy with procarbazine, CCNU (lomustine) and vincristine.
Table 1. Age-specific annual incidence of diffusely infiltrating gliomas (Central Brain Tumor Registry of the United States, statistical report 2007-2011)

<table>
<thead>
<tr>
<th>WHO grade</th>
<th>Age at diagnosis</th>
<th>0-19</th>
<th>20-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55-64</th>
<th>65-74</th>
<th>75-84</th>
<th>85+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligodendroglioma</td>
<td>II</td>
<td>0.05</td>
<td>0.31</td>
<td>0.47</td>
<td>0.42</td>
<td>0.32</td>
<td>0.22</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>(0.05 – 0.06)</td>
<td>(0.29 – 0.33)</td>
<td>(0.44 – 0.50)</td>
<td>(0.39 – 0.44)</td>
<td>(0.29 – 0.34)</td>
<td>(0.20 – 0.26)</td>
<td>(0.17 – 0.24)</td>
<td>(0.07 – 0.15)</td>
<td></td>
</tr>
<tr>
<td>Anaplastic</td>
<td>III</td>
<td>0.05</td>
<td>0.31</td>
<td>0.47</td>
<td>0.42</td>
<td>0.32</td>
<td>0.22</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>oligodendroglioma</td>
<td>(0.05 – 0.06)</td>
<td>(0.29 – 0.33)</td>
<td>(0.44 – 0.50)</td>
<td>(0.39 – 0.44)</td>
<td>(0.29 – 0.34)</td>
<td>(0.20 – 0.26)</td>
<td>(0.17 – 0.24)</td>
<td>(0.07 – 0.15)</td>
<td></td>
</tr>
<tr>
<td>Diffuse astrocytoma</td>
<td>II</td>
<td>0.27</td>
<td>0.50</td>
<td>0.58</td>
<td>0.61</td>
<td>0.79</td>
<td>1.02</td>
<td>1.14</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>(0.26 – 0.29)</td>
<td>(0.48 – 0.53)</td>
<td>(0.55 – 0.61)</td>
<td>(0.57 – 0.64)</td>
<td>(0.75 – 0.83)</td>
<td>(0.96 – 1.08)</td>
<td>(1.06 – 1.23)</td>
<td>(0.59 – 0.79)</td>
<td></td>
</tr>
<tr>
<td>Anaplastic</td>
<td>III</td>
<td>0.09</td>
<td>0.28</td>
<td>0.39</td>
<td>0.46</td>
<td>0.65</td>
<td>0.90</td>
<td>0.92</td>
<td>0.39</td>
</tr>
<tr>
<td>astrocytoma</td>
<td>(0.08-0.10)</td>
<td>(0.26-0.30)</td>
<td>(0.36-0.41)</td>
<td>(0.43-0.48)</td>
<td>(0.61-0.69)</td>
<td>(0.85-0.96)</td>
<td>(0.85-0.99)</td>
<td>(0.32-0.47)</td>
<td></td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>IV</td>
<td>0.15</td>
<td>0.41</td>
<td>1.23</td>
<td>3.59</td>
<td>8.03</td>
<td>13.09</td>
<td>15.03</td>
<td>8.95</td>
</tr>
<tr>
<td></td>
<td>(0.14-0.17)</td>
<td>(0.39-0.43)</td>
<td>(1.18-1.28)</td>
<td>(3.51-3.67)</td>
<td>(7.90-8.16)</td>
<td>(12.87-13.31)</td>
<td>(14.74-15.34)</td>
<td>(9.60-9.32)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Survival of elderly patients treated in the NOA-08 and Nordic trials: stratified by MGMT promoter methylation\cite{18,19}.

<table>
<thead>
<tr>
<th></th>
<th>NOA-08: Age 65+, Radiotherapy 30 x 2 Gy versus Temozolomide on 7/14 days 100 mg/m²</th>
<th>Nordic: Age 60+, Radiotherapy 10 x 3.4 Gy or 30 x 2 Gy versus Temozolomide 5/28 days 150-200 mg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Methylated</td>
<td>Unmethylated</td>
</tr>
<tr>
<td>Median EFSa: months (95 % CI)</td>
<td>4.6 (4.2–5.0)</td>
<td>8.4 (5.5–11.7)</td>
</tr>
<tr>
<td>Median OS: months (95 % CI)</td>
<td>9.6 (6.4–n.r.)</td>
<td>n.r.</td>
</tr>
<tr>
<td>HR for EFSa (95 % CI)b</td>
<td>1.0c</td>
<td>0.53 (0.33–0.86)</td>
</tr>
<tr>
<td>HR for OS (95 % CI)b</td>
<td>1.0c</td>
<td>0.69 (0.35–1.16)</td>
</tr>
</tbody>
</table>

a event-free survival (EFS) or progression-free survival (PFS) were not reported in the Nordic trial; b NOA-08: Cox-regression model
correcting for age, extent of resection, histology and $MGMT$; Nordic: No multivariate analyses for EFS or PFS reported; Cox-regression correcting for age, type of surgery (biopsy versus resection), WHO performance score and $MGMT$; c methylated and unmethylated tumors were pooled for reference (N=178).
Table 3. Age-stratified hazard ratios for overall survival of patients treated within the AVAGlio trial39.

<table>
<thead>
<tr>
<th>Age</th>
<th>N</th>
<th>HR (95% CI)a</th>
</tr>
</thead>
<tbody>
<tr>
<td><50</td>
<td>229</td>
<td>1.05 (0.76-1.44)</td>
</tr>
<tr>
<td>50-59</td>
<td>323</td>
<td>0.90 (0.70-1.16)</td>
</tr>
<tr>
<td>60-69</td>
<td>296</td>
<td>0.81 (0.63-1.05)</td>
</tr>
</tbody>
</table>

a univariate analyses in patients receiving combined radiochemotherapy plus bevacizumab versus placebo